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Abstract. Outsourcing an image classification task raises privacy con-
cerns, both from the image provider’s perspective, who wishes to keep
their images confidential, and from the classification algorithm provider’s
perspective, who wishes to protect the intellectual property of their clas-
sifier. We propose EPIC, an efficient private image classification system
based on support vector machine (SVM) learning, secure against mali-
cious adversaries. EPIC builds upon transfer learning techniques known
from the Machine Learning (ML) literature and minimizes the load on
the privacy-preserving part. Our solution is based on Multiparty Com-
putation (MPC), it is 34 times faster than Gazelle (USENIX’18) –the
state-of-the-art in private image classification– and it improves the com-
munication cost by 50 times, with a 7% higher accuracy on CIFAR-10
dataset. For the same accuracy as Gazelle achieves on CIFAR-10, EPIC
is 700 times faster and the communication cost is reduced by 500 times.

1 Introduction

Visual object recognition is an important machine learning application, deployed
in numerous real-life settings. Machine Learning as a Service (MLaaS) is becom-
ing increasingly popular in the era of cloud computing, data mining, and knowl-
edge extraction. Object recognition is such a machine learning task that can be
provided as a cloud service. However, in most application scenarios, straightfor-
ward outsourcing of the object recognition task is not possible due to privacy
concerns. Generally, the image holder who wishes to perform the image classifi-
cation process, requires their input images to remain confidential. On the other
hand, the classification algorithm provider wishes to commercially exploit their
algorithm; hence, requires the algorithm parameters to remain confidential.

We consider an approach, which facilitates the outsourcing of the image clas-
sification task to an external classification algorithm provider, without requiring
the establishment of trust, contractually or otherwise, between the involved par-
ties. We focus on the evaluation task (i.e., labeling a new unclassified image), and
not the learning task. Our proposal is based on secure Multiparty Computation
(MPC), and allows for private image classification without revealing anything
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about the private images of the image holder, nor about the parameters of the
classification algorithm. Unlike previous work [4,5,20], we can fully outsource
the task at hand, in such a way that the classification algorithm provider does
not need to be the same entity as the cloud computing provider. Although any
of the involved parties (i.e., the classification algorithm provider, and the image
holder) can play the role of one of the MPC servers, this is not a requirement
for guaranteeing the security of our proposal. MPC allows distribution of trust
to two or more parties. As long as the image holder (resp. the classification algo-
rithm provider) trusts at least one of the MPC servers, their input images (resp.
their classification algorithm parameters) remain secret.

MPC allows a set of mutually distrusting parties to jointly compute a func-
tion on their inputs, without revealing anything about these inputs (other than
what can be inferred from the function output itself). Currently, MPC allows
one to compute relatively simple functions on private data; arbitrarily complex
functions can be supported, but with an often prohibitive computational cost.
EPIC, our privacy-preserving image classification solution, combines the tech-
niques of transfer learning feature extraction, support vector machine (SVM)
classification, and MPC. In this work we use recently developed techniques for
generic image classification (within the ImageNet competition) such as trans-
fer learning to extract powerful generic features. Transfer learning using raw
Convolutional Neural Network (CNN) features has been studied extensively by
Azizpour et al. [3], and Yosinski et al. [54]. Then, the computation done in the
MPC setting is minimized to only evaluate a simple function with secret shared
inputs.

We focus on classification via SVM, as opposed to using more sophisticated
techniques, such as Neural Networks (NNs), in the privacy-preserving domain to
minimize the computational cost. While the field of private image classification is
shifting towards NN-based approaches [25,33,42], we show that it is not necessary
to use private NNs, as we can achieve classification with better accuracy by using
generic NNs to improve the feature extraction techniques used. Although CNNs
are the state-of-the-art for image classification [23], we confirm that SVMs can
achieve high accuracy, as long as they are provided with good quality features.
Transforming a NN to a privacy-preserving one results in inefficient solutions
(e.g., 570 seconds for one image classification by CryptoNets [20]).

A schematic representation of the application scenario treated by EPIC is
given in Fig. 1. Using additive secret sharing techniques both the classification
algorithm provider, and the image holder share their inputs to the n ≥ 2 MPC
servers. Note that no information about the actual secret inputs can be gained
by the individual shares alone. Thus, each MPC server learns nothing about
the inputs of the two parties. The cluster of the MPC servers comprise the
cloud computing provider, which together execute the MPC protocol to produce
the final classification result. The MPC servers communicate via authenticated
channels to accomplish what the protocol prescribes. The protocol completes
its execution by having all MPC servers sending their share of the final classi-
fication result to the designated party, who can then reconstruct the result by
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Fig. 1. A schematic representation of the private image classification scenario.

combining the received shares. This party can be the image holder, or an external
analyst, assigned to examine the classification results, without getting access to
the underlying private images. The involved parties (image holder, classification
algorithm provider, and –potentially– analyst), may play the role of the MPC
servers themselves, avoiding completely the outsourcing to the cloud provider(s).

A key aspect of our work is how the data is processed before the MPC engine
is used to perform the classification. The SVM classification is performed on so-
called feature vectors, and not directly on the images. The way one determines
these feature vectors not only affects accuracy, but it also has an impact on
security. As shown in Fig. 1 the image holder performs the feature extraction
on the input image before it is passed to the secure gateway. Thus this feature
extaction must not be specific to the algorithm classification provider; otherwise
the extracted features could reveal information about exactly what is being
classified. We apply a generic feature extraction method, which is independent
of the underlying classification task.

In particular, we employ TensorFlow [1], to extract features based on the ac-
tivation of a deep CNN (specifically the Inception-v3 [46] CNN) trained on a set
of object recognition tasks, different from the target task. This method is known
as CNN-off-the-shelf in the ML literature, and it has been successfully applied
in various image recognition tasks [15,41]. Since the CNN is generic, it can be
released in the clear, and hence become part of the image holder’s preprocess-
ing. This not only gives us a security benefit, but it also significantly improves
the accuracy of our method. There are many public CNNs available online for
generic feature extraction in Caffe’s Model Zoo, which can be used with our
EPIC solution to add a privacy dimension to a typical ML problem [24]. In our
paper we selected Inception-v3 as the public CNN to extract features, because it
suits many generic image recognition tasks, and allows us to benchmark EPIC
against previous solutions on traditional datasets such as CIFAR-10.
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We also present a second variant of EPIC, which aims at allowing a tradeoff
between the accuracy of the classifier’s predictions, and its performance. It does
so by deploying a kernel approximation method, on top of Inception-v3 features
for dimensionality reduction.

We implemented our solution using SPDZ [7], which was introduced by
Damg̊ard et al. [12,13]; it is based on additive secret sharing, and it is proven
secure in the active security model, in the full versions of the papers [12,13]. We
assume the reader to be familiar with MPC, but we discuss preliminaries on the
techniques used by EPIC for completeness in Appendix A. EPIC outperforms
the state-of-the-art in secure neural network inference [25], both in terms of ef-
ficiency, and in terms of prediction accuracy. Our implementation shows that
privacy-preserving image classification has become practical. As shown in Ta-
ble 1, we are the only provably secure work in the active security model, which
is a property we inherit by the chosen implementation frameworks. A system
like EPIC could find application in numerous real-life cases, such as in purchase
scenarios where visual insepction is performed, or when targeted surveillance is
required without compromising non-targets’ privacy.

Our contributions are thus four fold: i) We enable full outsourcing of privacy-
preserving image classification to a third independent party using a simple tech-
nique yet much faster and accurate than others, which require complicated ma-
chinery. ii) Our solution does not leak any information about the private images,
nor the classifier, while being the first to provide active security. iii) We show
how to deploy a data-independent feature extraction method to alleviate the
privacy-preserving computations, while increasing accuracy and efficiency. iv)
We demonstrate the practicality of our approach, both in terms of efficiency,
and in terms of accuracy, by conducting experiments on realistic datasets.

2 Related Work

Privacy-preserving machine learning can focus either on providing a secure train-
ing phase, a secure classification phase, or both secure training and classifica-
tion phases. The first research works in the field aimed at designing a privacy-
preserving training phase. Recently, due to the advent of cloud computing, and
Machine Learning as a Service, more and more works focus on the design of a
privacy-preserving classification phase. Fewer works have attempted to address
both the training, and the classification phases in a privacy-preserving manner.

To facilitate an easy comparison of the related work, we summarize the main
features of each proposal in Table 1.
• The first column of Table 1 is the reference to the corresponding paper.
• The second column indicates whether the work considers secure training (T),

secure training and classification (T+C), or only secure classification (C).
• The third column indicates the security model, under which the proposed

protocols are secure, where P stands for passive security, and A stands for
active security. N/A (not applicable) refers to differential privacy techniques,
which are designed to protect against inference about the inputs from the
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outputs, and thus are orthogonal to the issue of securing the computation
which we deal with.

• The fourth column denotes the method used to preserve privacy. DP stands
for differential privacy; SP stands for selective privacy, and refers to the
unique characteristic of the work of Shokri and Shmatikov [45] allowing the
users to decide how much private information about their learned models
they wish to reveal. SHE stands for Somewhat Homomorphic Encryption, 2-
PC for 2-Party Computation, and MPC stands for Multiparty Computation
(which could include 2-PC).

• The fifth column lists the training method(s) used. N-L SVM stands for non-
linear SVM, NN for Neural Networks, LM for Linear Means, FLD for Fisher’s
Linear Discriminant, HD for hyperplane decision, LIR for linear regression,
LOR for logistic regression, and DT for decision trees.

• The sixth column lists the information that is revealed by the protocol exe-
cution. C stands for information about the classifier, and TD for information
about the training data. We note with boldface letters the information that
is intentionally revealed by the protocol execution, and we mark with an
asterisk the information that is protected by means of differential privacy
techniques. Information that can potentially, and unintentionally be leaked
is noted with normal, non-boldface letters.

• The last column indicates whether the work provides an implementation.

Training an SVM in a privacy-friendly way, has been previously considered
based on techniques of differential privacy [30,31]. Despite the little overhead
that these techniques incur, which makes them competitive from an efficiency
perspective, they do not consider the security of the actual computation during
the training or classification. Shokri and Shmatikov [45] achieve such privacy-
preserving collaborative deep learning with multiple participants, while refrain-
ing from using cryptographic techniques. Their work focuses on learning the NN,
but they also consider protecting the privacy of each individual’s NN, allowing
the participants to decide how much information to share about their models.

A lot of research has been devoted to provable privacy-preserving techniques
for training a classifier. Privacy-preserving data mining has been an active re-
search area since the seminal work of Lindell and Pinkas [32]. More recently,
Vaidya et al. [50] showed how to train a SVM classifier, in a privacy-preserving
manner, based on vertically, horizontally, and arbitrarily partitioned training
data. In follow-up work, Teo et al. [47] improved upon the efficiency of the
solution of Vaidya et al. [50], and showed that their approach scales well to ad-
dress the challenges of data mining on big data. Chase et al. [9] combine MPC
techniques with differential privacy techniques to achieve private neural net-
work learning. Their work provides provable security guarantees for the learning
phase (in the passive security model), and adds noise to the resulting network
to protect its privacy during classification.

A parallel research line aiming to address the same challenge, namely privacy-
preserving data mining, is based on homomorphic encryption (instead of MPC).
The notion of homomorphic encryption dates back to the work of Rivest et
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Func. Sec. model Privacy mthd Train mthd Info leak Impl.

[30] T N/A DP N-L SVM C; TD∗ X
[31] T N/A DP N-L SVM C; TD∗ X
[45] T P SP NN C X
[50] T P MPC N-L SVM C X
[47] T P MPC; DP N-L SVM C X
[9] T P MPC; DP NN C∗ X

[21] T+C P SHE LM; FLD no X
[2] T+C P SHE Bayes; random forests no X
[29] T+C P 2-PC N-L SVM no ×
[10] T+C P 2-PC NN TD ×
[34] T+C P 2-PC NN; LIR; LOR no X

[20] C P SHE NN no X
[4] C P SHE N-L SVM C X
[8] C P SHE NN no ×
[6] C P SHE; 2-PC HD; Bayes; DT no X
[40] C P 2-PC N-L SVM no X
[5] C P 2-PC NN C ×
[35] C P 2-PC NN no X
[44] C P 2-PC NN no X
[33] C P 2-PC NN filter size X
[42] C P 2-PC NN; SVM no X
[25] C P 2-PC NN no X

EPIC C A MPC SVM no X
Table 1. Comparison of the related work.

al. [43], but only recently fully homomorphic encryption was devised [19]. This
type of homomorphic encryption allows the computation of any polynomial func-
tion on the encrypted data, and unlike MPC, it does not require communication,
as the task can be outsourced to one single party. Since the seminal work of
Gentry [19], somewhat homomorphic encryption schemes have been proposed,
allowing computations of polynomial functions of a limited degree. Graepel et
al. [21] consider both machine learning training, and classification based on en-
crypted data, with their solutions being secure in the passive model. Due to
the selected homomorphic encryption scheme, Graepel et al. [21] cannot treat
comparisons efficiently, which excludes SVM-based solutions. Addressing both
learning, and classification based on extremely random forests, and näıve Bayes
networks, Aslett et al. [2], also work on homomorphically encrypted data.

One of the first private SVM classifiers was proposed by Laur et al. [29], which
addresses both the training and the classification in a privacy-preserving manner.
Their work combines the techniques of homomorphic encryption, secret sharing,
and circuit evaluation, into a passively secure 2-PC solution. Concurrently, and
independently Dahl [10] is working on using the same MPC framework as in our
work, to realize both the training, and the classification of CNN based privacy-
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preserving algorithms. While Dahl [10] is deploying CNNs instead of SVM, he
needs to apply them in a non-black-box fashion. The protocol of Dahl [10] allows
some leakage of information during the training phase, which is not the case with
our approach. SecureML [34] also considers both training and classification in
the 2-PC setting, and the passive security model. These approaches [29,10,34]
can only treat the two-party setting, and cannot be trivially extended to allow
the classifier provider to be a different entity than the cloud provider.

Other works focus particularly on the private image classification problem,
instead of the training of the model. Gilad-Bachrach et al. [20] propose a solu-
tion applicable to the image classification problem, based on homomorphically
encrypted data. The resulting CryptoNets [20] provide an accuracy of 99% for
the MNIST dataset, and can make on average 51739 predictions per hour. How-
ever, this is only the case when the predictions are to be made simultaneously;
for a single prediction the task takes 570 seconds to complete.

Recent work by Barnett et al. [4] demonstrated the potential of polynomial-
kernel SVM to be used for classification in a privacy-preserving manner. Specif-
ically, Barnett et al. apply SVM techniques for the classification –as in our
work– but on encrypted data. Although they mention the potential of an MPC
approach to be more efficient in this setting, they do not consider it, because
direct translation of the protocols to MPC would require interaction between
the client and the classification algorithm provider during the computations. We
overcome this limitation by extending the application scenario in a way that
allows the classification task to be fully outsourced to a cluster of independent
third parties. We implement their approach using SPDZ in a more secure way by
keeping the PCA components private (they choose to make them public). This
implementation is more expensive than EPIC, due to the non-linearity of the
polynomial SVM, and it is also less accurate. Albeit inefficient and inaccurate,
it provides an initial benchmark, and it shows the gap between an FHE and
an MPC approach (see details in Section 4). Chabanne et al. [8] attempted to
approximate commonly used functions used in NN-based classification in a SHE-
friendly manner. Despite the high prediction accuracy that their work achieves,
Chabanne et al. do not provide any performance evaluation results.

In the 2-PC setting, Bost et al. [6], and Rahulamathavan et al. [40] focus on
the problem of private classification, where both the classifier parameters, and
the client’s input to be classified need to remain private. The latter approach
does not consider linear SVM, while both approaches only offer passive security.
Barni et al. [5] propose private NN-based data classification, also in the 2-PC
setting and passive security model. They suggest three protocols, which offer
different privacy guarantees for the classifier owner, while always protecting fully
the client’s input. Follow up work by Orlandi et al. [35] extends the work of
Barni et al. in terms of privacy. DeepSecure [44] is another work in the 2-PC
setting, and the passive security model, using Garbled-Circuit techniques. A
direct performance comparison of DeepSecure versus CryptoNets [20] confirmed
a significant efficiency improvement achieved by DeepSecure.
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The recently proposed MiniONN [33] is one of the latest NN-based data clas-
sification approaches in the 2-PC setting. MiniONN demonstrates a significant
performance increase compared to CryptoNets, without loss of accuracy, as well
as better accuracy compared to SecureML [34], combined with increased perfor-
mance. However, it still operates in the 2-PC setting, which is more restricted
than the MPC setting we consider, and it only offers passive security. Under a
comparable configuration as MiniONN, and still in the passive security model,
Chameleon [42] achieves a 4.2 times performance improvement. Chameleon oper-
ates in the 2-PC setting, under the assumption that a Semi-Honest Third Party
(STP) is engaged in the offline phase to generate correlated randomness. Despite
the strong STP assumption, Chameleon does not need the third party for the
online phase, while it gets a significant performance increase from this STP.

Gazelle [25], the latest work on secure NN classification, outperforms, in
terms of efficiency, the best previous solutions in the literature [20,33,42], by
carefully selecting which parts of the CNN to carry out using a packed additively
homomorphic encryption, and which parts using garbled circuits. EPIC performs
better than Gazelle, while also being secure in the active security model. This is
because EPIC only treats linear computations in the privacy-preserving domain.

To the best of our knowledge, we are the first to provide a privacy-preserving
image classification tool combining SVM classification with transfer learning
feature extraction, offering active security. EPIC is more efficient than previous
work and achieves prediction accuracy higher than that of the related work on the
same datasets, although it does not deploy sophisticated NN-based classification
on the private inputs. Interestingly, EPIC is not limited to the 2-PC setting,
allowing a broad range of application scenarios to be treated by our solution.

3 EPIC

The proposed private image classification solution, EPIC, is based on transfer
learning techniques [48] for feature extraction. The EPIC algorithm for image
classification runs in two phases. In the first phase the image is passed through
a generic feature extraction method. Being generic, i.e., not task specific, this
method can be published in-the-clear and hence can be applied by the image
holder before passing the output securely to the MPC engine. In the second
phase the actual classification, via an SVM, is applied. This SVM is specific to
the task at hand, and hence needs to be securely passed to the MPC engine. We
thus have two problems to solve: Feature Extraction and SVM classification.

Feature Extraction. High quality features are key to the accuracy of a trained
classifier. We ensure high quality feature extraction by deploying the techniques
of transfer learning. Specifically, we perform feature extraction based on Inception-
v3 [46], which is a public CNN classifier trained on a set of non-privacy-sensitive
object recognition tasks. Commonly, the training for such a CNN classifier is
performed on large datasets, which enhances the prediction accuracy of the
classifier. In our context, the trained classifier extracts features based on the
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activation of a deep convolutional network. Our work shows that powerful fea-
ture extraction is essential to the quality of the final classification accuracy. In
fact, we demonstrate that the high-complexity (CNN) tasks can be learned on
non-private datasets, and still use their power for feature extraction of unrelated
tasks. Eventually, this allows us to deploy only linear functions for the actual
classification, which enables accurate, and efficient privacy-preserving solutions.

SVM Classification. Despite the increasing popularity and high effectiveness
of CNN classification techniques, the direct deployment of CNN techniques re-
quires large training datasets [14] that are potentially difficult to obtain when
the underlying data is privacy sensitive. In addition, black-box transformation of
CNN-based methods to their privacy-preserving equivalents will result in clas-
sifiers that are computationally prohibitive to use. Thus using a light-weight
classification method such as SVMs can be beneficial in privacy sensitive envi-
ronments, and their evaluation can be done (as we show) in a secure manner.
With the CNN features, an SVM can learn quickly from very few positive exam-
ples, which shows that they are useful to perform one-shot learning [15]. Thus,
we opted for the design of a private SVM classifier, while using the techniques
of CNN-based transfer learning in the context of feature extraction, which does
not raise privacy concerns.

To classify a new unlabeled input with our classifier trained with a linear
SVM, we need to securely evaluate the following equation:

class(h) = arg max
i

(xi · h + bi), (1)

where:
• h is the vector representing the client’s image, and has been provided to the

MPC servers in shared form;
• bi is the model intercept (aka bias), calculated by the classification algorithm

provider during the learning phase and secret shared to the MPC servers;
• xi are the n support vectors.

The support vectors xi, and the model intercepts bi are assumed to need pro-
tection, as they represent the intellectual property of the learned model.

Feature Reduction. To achieve efficient training of kernel machines (such as
SVM) aimed at non-linear problems, several approximation methods (e.g., the
method of Rahimi and Recht [38]) have been proposed. Such approaches have the
goal to alleviate the (cleartext) computational, and storage cost of the training,
incurred by the high dimensionality of the data, especially when the training
datasets are large. The approximation generally is implemented by mapping the
input data to a low-dimensional feature space, such that the inner products of
the mapped data are approximately equal to the features of a more complex
(e.g., Gaussian) kernel. This is known as the kernel trick. These features are
then combined with linear techniques (e.g., linear SVM), yielding an efficient
training, but also an efficient classification, which we are able to implement in a
privacy-preserving way.
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One of the first successful approaches for kernel approximations, achieving
high accuracy, was proposed by Rahimi and Recht [38], and is based on random
features, which are independent of the training data. To the contrary, Nyström
based kernel approximations [52,16], are data dependent. Although Nyström ap-
proximations outperform randomly extracted features [53] in terms of accuracy,
being data dependent makes them unfit for our purposes, as they require ap-
plying non-linear functions on the private inputs. From a computational, and
storage efficiency perspective, data independent approximations are favored.

We discovered that a variant of the method proposed by Rahimi and Recht [39]
is presented in the scikit-learn package [36]. This implements an RBF (Radial
Basis Function) sampler, which allows to transform the features without using
the training data. This dimensionality reduction (like the feature extraction) is
deployed both for the training, and for the data classification. Since the feature
selection is random (i.e., data independent), it can be performed on the cleartext
data, both by the classification algorithm provider, and by the client, without
raising privacy concerns.

Our second variant of EPIC (see below) supports dimensionality reduction
for free, by placing all the computational load on the cleartext. This variant
makes use of an algorithm implementing the RBF sampler listed in Fig. 2. In
our application scenario, the algorithm provider broadcasts the RBF sampler
parameters, namely the γ parameter and the feature size. The γ parameter does
not reveal any information about the dataset. Note that γ is a floating point
number, which is varied to match a cross-validation score on the training data.
The shape variable is the feature size of a point (set to 2048), which is the output
of Inception-v3.

Scikit-learn variant of Random Kitchen Sinks [36].

Init: Set γ, shape, staterandom, nc.
Fit:

1. Select weightsrandom =
√

2 ∗ γ · staterandom.N (0, 1) of size nc × shape, with
mean 0 and standard deviation 1.

2. Assign offsetrandom = staterandom.U(0, 2 · π) of size nc.
Transform(x):

1. projection = x · weightsrandom + offsetrandom.
2. projection = cos (projection).
3. projection = projection · (

√
2/
√

nc)

Fig. 2. RBF Sampler.

EPIC – Simple Variant: The classification algorithm provider has already
trained their SVM classifier. The parameters for the SVM classification are
shared to the MPC servers by the classification algorithm provider and are
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never revealed to the image holder (nor the analyst). The image holder applies
the Inception-v3 feature extraction to their image, and takes the second to last
layer, which has a feature size of 2048, as their output. The resulting features are
then shared (via the secure gateway) to the MPC servers by the image holder,
and thus are kept secret from the classification algorithm provider. We indicate
secret shared data in square brackets (Fig. 1). The MPC engine then evaluates
the SVM securely on the features and outputs the result to the analyst (or image
holder).

Note that although EPIC does not allow any information leakage about the
private SVM parameters, recent work by Tramer et al. [49] showed that only
black-box access to the classifiers can still serve to recover an (near-)equivalent
model. We consider this problem to be out of this work’s scope, as it can easily
be tackled by restricting the number of queries an external party is allowed to
perform on the MPC Engine. This type of attacks has not been averted by any
of the secure computation solutions in the related work.

EPIC – Complex Variant: The second variant of the EPIC protocol is summa-
rized in Fig. 3. This EPIC variant trades a small percentage of the classification
accuracy to increase efficiency. It achieves this tradeoff by deploying the kernel
approximation dimensionality reduction explained above, and in particular the
kernel approximation sub-step is also considered to be part of the feature ex-
traction phase. Here the algorithm provider needs to publish the feature size of a
point (in our case 2048) and the parameter γ from above. At first sight it might
seem that γ reveals information about the training data, but we noticed that for
our datasets one can fix γ = 2−13 to a small value and modify the regularization
parameter C of the SVM. This parameter C will always remain private to the
algorithm provider, hence there is no information leakage. We stress again that
for both cases, the CNN feature extraction is input independent, so privacy is
maintained for the image holder and algorithm provider.

Specifically, the protocol starts with the Setup phase, where the algorithm
provider (AP) performs the kernel approximation (from Fig. 2) on its own
dataset, and broadcasts the type of CNN used, and the Init parameters neces-
sary for the feature reduction at the image holder (IH) side. Then, the algorithm
provider secret shares the SVM parameters to the MPC Engine (Eng). Secret
shared values are denoted in double square brackets. In the evaluation phase,
the image holder performs the feature extraction locally (given the previously
obtained parameters), and secret shares the new point to be classified by Eng.
Then, the MPC protocol computes Eq. 1.

4 Experiments

Experimental Setup. Our experiments are conducted on two MPC servers,
which yields the most efficient solution, but we also show how the proposed sys-
tem scales with more than two MPC servers. We assume a protocol-independent,
input-independent preprocessing phase that takes place prior to the protocol ex-
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EPIC Protocol with kernel approximation as feature reduction

Setup:
1. Algorithm Provider (AP) broadcasts the type of CNN used for feature

extraction.
2. AP computes γ from Fig.2 on its own training data. Then AP broadcasts

the Init variables from Fig. 2 and secret shares the support vectors xi, bi
to the MPC engine (Eng). These are stored on Eng as JxiK, JbiK.

Evaluate:
1. Image Holder (IH) uses public CNN to extract features h′ from its image.

Then IH maps h′ 7→ h locally using the RBF sampler initialized with the γ
broadcasted by AP to obtain a smaller number of features. The new point
h is further secret shared to the Eng and stored as JhK.

2. Eng uses JxiK, JbiK, JhK to compute Eq. 1 with a shared result: Jclass(h)K.

Fig. 3. Protocol for SVM classifcation with RBF sampler.

ecution between the MPC servers. The inputting parties do not need to be aware,
nor contribute to this phase. The preprocessing creates the randomness needed to
boost the efficiency of the online phase, and allows the inputting parties (image
holder and classification algorithm provider) to securely share their inputs.

The online phase begins with the image holder, and the algorithm provider
sharing their inputs (reduced CNN features, and SVM parameters, resp.) to the
MPC servers. This is performed by executing an interactive protocol between
each inputting party and the two MPC servers, as Damg̊ard et al. [11] proposed.
Then, the actual private image classification task is executed only between the
two MPC servers, as in the Evaluate phase of Fig. 3. In the end, each MPC
server sends their resulting share to the image holder, or the analyst, who can
combine the shares and reconstruct the cleartext result, which is the desired
class label.

From Fixed Point Arithmetic to Integers. For the secure integer com-
parison sub-protocols that EPIC deploys, we selected the statistical security
parameter to be κ = 40 bits. We stress that everywhere the computational se-
curity parameter is set to λ = 128. We observed experimentally after running
the scikit-learn’s RBF (see Fig. 2) on top of Inception-v3 that each feature is
bounded by abs(xi) ≤ 15 where len(x) ≤ 2048.

To avoid the costly fixed point arithmetic, we scale each feature xi by a fac-
tor f , and then perform arithmetic on integers. Particularly, we compute xi · f
and then floor it to the nearest integer. We varied f , and evaluated the SVM’s
accuracy. We experimentally concluded that setting f = 28 gives sufficient ac-
curacy, as if working on floating point numbers, while lowering the scale factor
f decreased the accuracy by more than 1%. If f = 28 then to compute a class
score from Eq. 1 becomes: s =

∑2048
j=1 (28 · xij · 28 · hj) + 216 · bi since we need
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to scale both the support vectors xi as well the features h. Using the fact that
each component is bounded by 15 then clearly s ≤ 235.

To improve the underlying MPC performance we wanted to aim for using a
64-bit prime modulus for the underlying linear secret sharing scheme. Unfortu-
nately, if our inputs are of 35 bit size then there is no room left to perform the
secure comparisons in arg max with 40 bits statistical security, as 35 + 40 > 64.
Since some of the xij ’s are negative and roughly uniform around zero then we can
conclude that s is bounded by 20 bits which was confirmed for all our datasets.
Hence, we could run everything modulo a 64-bit prime with 40-bit statistical
security, while ensuring there is no information leak from the comparisons. We
can achieve an even tighter bounding by normalizing the features using the L2-
Norm, after the RBF-Sampler invocation. In our setting this is not necessary,
since the expected bound on s is already low (20 bits). We also experimented (see
later) with higher statistical security of 100 bits by using 128-bit prime fields.

For the feature reduction we considered whether to use RBF or PCA, and
concluded that RBF is more suitable for our purposes. Despite the accuracy
loss that RBF incurs compared to PCA, it is justified to use RBF for reasons
of computational and communication efficiency. For a more detailed comparison
between RBF and PCA feature reduction in our setting, we refer the reader to
Appendix B.

Datasets. We selected three image datasets: CIFAR-10, MIT-67, and Caltech-
101, to show how EPIC scales in terms of performance, when increasing the
number of classes, and to illustrate its classification accuracy.

• CIFAR-10 [28]: This is a dataset of 60000 32x32 color images, out of which
50000 are training images and 10000 are test images. CIFAR-10 features 10
classes of objects, with 6000 images per class. The accuracy metric is the
quotient between correctly classified samples and total number of samples.

• MIT-67 [37]: MIT-67 has 15620 indoor images from 67 scene categories. We
used 80 images per class for training, and the rest of the pictures for testing.
The accuracy metric used here is the mAP (mean Accuracy Precision), which
consists of calculating the average over the accuracies of each class.

• Caltech-101 [17]: This dataset contains pictures of objects of 102 categories.
Each class has at least 31 images and we chose to use 30 images from each
class for the training. The accuracy metric is mAP, just as in MIT-67.

Training. We trained the SVM on the cleartext versions of the aforementioned
datasets. Feature extraction was done after resizing each image to 256x256. We
trained Linear SVMs based on the one-versus-all strategy (OvA) [51], because
it is more efficient to evaluate n classifiers in MPC instead of n(n− 1)/2. Note
that we chose to avoid the data augmentation trick, and adopted the training
method presented in DeCAF [15] using the original datasets, and raw features
from Inception-v3 [15]. To find parameters that yield high classification accuracy,
we have done a grid search for the γ required in the RBF, and the parameter C,
which denotes the size-margin hyperplane for the SVM decision function.
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We stress that EPIC achieves a sufficient classification accuracy. Given that
EPIC workings have been purposely kept simple to allow for efficient secure com-
putations, we consider the classification accuracy of EPIC comparable to that
achieved by the state-of-the-art (non-privacy-preserving) works in the ML com-
munity. The best classification accuracy in-the-clear on the CIFAR-10 dataset is
97.14% [18], while EPIC achieves 88.8%. On the MIT-67 dataset, EPIC achieves
72.2% accuracy, while the state-of-the-art in-the-clear solution [27] reports an
accuracy of 83.1%. More interestingly, on Caltech-101, the state-of-the-art accu-
racy in-the-clear is still 93.42% [22], while EPIC achieves 91.4%.

Classification Accuracy and Performance Evaluation. We executed our
experiments, simulating the two MPC servers on two identical desktop computers
equipped with Intel i7-4790 processor, at 3.60 GHz over a 1Gbps LAN with an
average round-trip ping of 0.3ms.

Our algorithm hand matches the one listed in Fig. 3, where the Evaluate
step from Fig. 3 was implemented using the SPDZ software [7]. The preprocessing
phase for this step was estimated using the LowGear protocol by Keller et al. [26],
which is the fastest known protocol to produce triples for multiple parties with
active security. We do not report on the timings for the feature extraction and
reduction, since they can be done in the clear, locally by the external parties,
which provide inputs to the MPC engine, and they are not privacy-sensitive.

EPIC – Simple Variant: We evaluated the computational performance,
data sent over the network, and classification accuracy of EPIC on the default
2048 length feature from the output of Inception-v3. We report these experiment
results in Table 2. Increasing the number of classes n (from 10, to 67, to 102)
has a worsening effect on the performance, as the amount of data sent over the
network scales linearly with n. The runtime of the online phase is affected less
as n increases. Going from 10 classes (CIFAR-10) with 0.005 seconds runtime,
to 102 classes (Caltech) with 0.03 seconds, is an increase factor of six, whereas
for all other metrics it is roughly ten (i.e., linear in the number of classes).

In Table 3 we show that EPIC improves over Gazelle [25] in terms of every
relevant metric on CIFAR-10: accuracy with 7%, total communication by 50x,
and total runtime by 34x. This is because we start with secret shared (power-
ful) features obtained from public CNNs, whereas Gazelle [25] starts with an
encrypted image. We expect Gazelle’s timings to considerably improve, if they
adopt our approach, starting from encrypted features produced by a public CNN.

EPIC – Complex Variant: To increase the performance of EPIC even
further, we tried to minimize the feature size used, while still matching the
classification accuracy achieved by Gazelle [25] or MiniONN [33] for CIFAR-10.
In the end, we settled with nc = 128, and then performed a grid search on γ for
the MIT and Caltech datasets. Our results are reported in Table 4. Since the
number of features decreases considerably from 2048 to 128 the timings decrease
as well. For example, if we look at the online runtime compared to Gazelle [25],
our solution improves by a factor of 700x and the total communication cost
decreases by almost 500x. We do recognize that our setting is different from the
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one considered by Gazelle [25], but we see more the similarities, since the end
goal is the same, namely to classify secret shared (or encrypted) images.

Our results indicate that general image recognition, and user’s privacy can
go well together. In fact we showed that securing the private classification comes
nearly for free. A stronger case for why CNN features with a Linear SVM should
be considered, as a baseline benchmark is done by Razavian et al. [41].

Other optimizations: Note that one of the major improvements came from
running the dot products on multiple threads, and doing the argmax operation
in a tree-wise manner to decrease the number of communication rounds required.

Dataset Runtime (s) Communication (MB) Accuracy

Offline Online Total Offline Online Total %

CIFAR 0.36 0.005 0.37 24 0.33 24.33 88.8
MIT 2.43 0.02 2.45 161.94 2.24 164.18 72.2

Caltech 3.71 0.03 3.74 246.59 3.41 250 91.4

Table 2. 1 Gbps LAN timings for EPIC – Simple Variant on different datasets with a
Linear SVM.

Framework Runtime (s) Communication (MB) Accuracy

Offline Online Total Offline Online Total %

MiniONN [33]472 72 544 3046 6226 9272 81.61
Gazelle [25] 9.34 3.56 12.9 940 296 1236 81.61

EPIC 0.36 0.005 0.37 24 0.33 24.33 88.8

Table 3. 1 Gbps LAN timings for CIFAR-10 dataset on different frameworks. The
EPIC – Simple Variant is compared to the state-of-the-art private classification solu-
tions, and outperforms them in all metrics.

Multiparty Setting. We benchmarked EPIC on different number of comput-
ers with the RBF-128 variant on the CIFAR-10 dataset and measured through-
put (operations per second) for the online and offline phases in Fig. 4. For the
two party case our protocol can carry around 2650 evaluations per second. The
throughput decreases with a growing number of parties and reaches 870 ops per
second for the five parties case. Notice that the main bottleneck when executing
these protocols is still the preprocessing phase, generating the necessary triples.

Similar work. It is worth mentioning that we also implemented the method of
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Dataset Runtime (s) Communication (MB) Accuracy

Offline Online Total Offline Online Total %

CIFAR 0.037 0.0003 0.037 2.472 0.027 2.5 81.74
MIT 0.259 0.002 0.261 17.22 0.180 17.4 64.4

Caltech 0.395 0.004 0.399 26.27 0.273 26.543 85.56

Table 4. 1 Gbps LAN timings for EPIC – Complex Variant on different datasets with
a RBF-SVM and a 128 feature size.
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Fig. 4. Throughput of CIFAR-10 evaluations of secret features with RBF-128 EPIC
for multiple parties.

Barnett et al. [4] in SPDZ, after fixing some security bugs such as cleartext PCA
coefficients. They report 124s for one binary classification thus to extrapolate
this to 10 classes takes roughly 1240s. To translate the work for Barnett et al. in
SPDZ we used a feature extraction algorithm based on Histogram of Oriented
Gradients (HOG) and then reduced their dimension using PCA. The reduced
points were then plugged into a polynomial SVM to classify the inputs. This
methodology yielded a 6.7s execution time of the online phase, and an expensive
preprocessing phase of 12 hours for CIFAR-10. The classification accuracy was
also poor (58%). This showed that the input dependent phase in MPC is faster
than in FHE, by at least two orders of magnitude, confirming that our EPIC
solution outperforms traditional attempts at classifying images using SVMs.

The closest work to ours that tried to solve the issue of linear SVM classifi-
cation is a semi-honest 2-PC protocol due to Bost et al [6]. In this work party A
owns the model and party B holds the features to be classified. To compare our
method with theirs in an accurate manner we took their open sourced code and
tailored it to our feature length (2048), input size (27 bits) and computational
security λ = 128 and ran it on our computers; whilst maintaining their statisti-
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cal security of 100 bits. In Table 5 the method of Bost et al. [6] is benchmarked
with the recent libraries (NTL-11.3.0, HElib, etc.). We then compare with EPIC
using the same parameters as the ones used in the experiments of Bost et al.,
namely statistical security κ = 100 and computational security λ = 128, where
the shares live in Fp and p ≈ 2128 –see Appendix C for more details. EPIC has
a faster online phase than Bost et al., by at least a factor of 20, at the cost of
a slower preprocessing phase. This shows that the main bottleneck in the entire
protocol is the triple generation, which deploys expensive cryptographic tools.

Method Classes Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

[6] 10 0 0.48 0.48 0 5.36 5.36
EPIC 10 1.04 0.014 1.054 46.35 0.66 47.01

[6] 67 0 1.32 1.32 0 36.02 36.02
EPIC 67 7.04 0.058 7.09 312 4.42 316.42

[6] 102 0 1.67 1.67 0 54.85 54.85
EPIC 102 10.72 0.083 10.8 475.96 6.68 482.64

Table 5. 1 Gbps LAN timings for EPIC – Simple Variant and Bost et al. with different
number of classes.

5 Conclusion and Future Work

We have introduced EPIC, a private image classification system, trained with
SVM, while having the input features extracted based on the techniques of trans-
fer learning. We showed how to achieve privacy-preserving image classification in
such a way that the task can be fully outsourced to a third, independent party.
For our solution we deployed generic MPC tools and showed how to avoid the
restricted two-party setting. Unlike all previous work, our approach provides ac-
tive security, does not leak any information about the private images, nor about
the classifier parameters, and it is orders of magnitude more efficient than the
privacy-preserving classification solutions proposed in the literature.

Due to their highly accurate predictions, especially for multiclass classifica-
tion tasks, CNNs have superseded SVM as the state-of-the-art for image classi-
fication. However, our work shows that in the privacy-preserving domain, SVM
classification can still produce accurate results, as long as it is provided with high
quality features. Thus, we chose to focus on improving the feature extraction
phase, using a transfer learning, CNN-based approach, while avoiding the exe-
cution of such complex functions in the MPC domain. An interesting advantage
of our solution is that it can be applied to the homomorphic encryption domain,
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since performing the linear operations has depth 1, and the costlier operation is
computing the argmax, which requires to branch on secret comparisons.

Our experiments confirmed that there is a tradeoff between the complex-
ity, and therefore also accuracy of the classification algorithms used, versus the
efficiency of the privacy-preserving variants of the proposed solutions. In the ac-
tive security model that we consider in this work, deploying CNNs in the same
manner as they are used on cleartext data, is computationally prohibitive with
current privacy-preserving methods.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-
IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and
Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070. This work has been supported in part by the Research
Council KU Leuven grants C14/18/067 and STG/17/019.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: A System for Large-Scale Machine Learning. In:
OSDI. pp. 265–283 (2016)

2. Aslett, L.J., Esperança, P.M., Holmes, C.C.: Encrypted Statistical Machine Learn-
ing: New Privacy Preserving Methods. arXiv:1508.06845 (2015)

3. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Factors of Trans-
ferability for a Generic Convnet Representation. IEEE transactions on pattern
analysis and machine intelligence 38(9), 1790–1802 (2016)

4. Barnett, A., Santokhi, J., Simpson, M., Smart, N.P., Stainton-Bygrave, C., Vivek,
S., Waller, A.: Image Classification using non-linear Support Vector Machines on
Encrypted Data. IACR Cryptology ePrint Archive: 2017/857 (2017)

5. Barni, M., Orlandi, C., Piva, A.: A Privacy-Preserving Protocol for Neural-
Network-Based Computation. In: Multimedia and security workshop. pp. 146–151.
ACM (2006)

6. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine Learning Classification over
Encrypted Data. In: Network and Distributed System Security Symposium (2015)

7. Bristol Crypto: SPDZ-2: Multiparty computation with SPDZ, MASCOT, and
Overdrive offline phases. https://github.com/bristolcrypto/SPDZ-2 (2018)

8. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
Preserving Classification on Deep Neural Network. IACR Cryptology ePrint
Archive: 2017/35 (2017)

9. Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P.: Private Col-
laborative Neural Network Learning. IACR Cryptology ePrint Archive: 2017/762
(2017)

10. Dahl, M.: Private Image Analysis with MPC: Training CNNs on Sen-
sitive Data using SPDZ. https://mortendahl.github.io/2017/09/19/
private-image-analysis-with-mpc/ (2018)

https://github.com/bristolcrypto/SPDZ-2
https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/
https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/


EPIC: Efficient Private Image Classification 19

11. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confiden-
tial Benchmarking based on Multiparty Computation. IACR Cryptology ePrint
Archive: 2015/1006 (2015)

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
Covertly Secure MPC for Dishonest Majority–or: Breaking the SPDZ Limits. In:
ESORICS. pp. 1–18. Springer (2013)

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty Computation from
Somewhat Homomorphic Encryption. In: CRYPTO, pp. 643–662. Springer (2012)

14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A Large-Scale
Hierarchical Image Database. In: CVPR. pp. 248–255. IEEE (2009)

15. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition.
In: ICML. pp. 647–655 (2014)

16. Drineas, P., Mahoney, M.W.: On the Nyström Method for Approximating a Gram
Matrix for Improved Kernel-Based Learning. Journal of Machine Learning Re-
search 6(Dec), 2153–2175 (2005)

17. Fei-Fei, L., Fergus, R., Perona, P.: Learning Generative Visual Models from Few
Training Examples: An Incremental Bayesian Approach Tested on 101 Object Cat-
egories. In: CVPR. pp. 178–178. IEEE (2004)

18. Gastaldi, X.: Shake-Shake Regularization. arXiv:1705.07485 (2017)
19. Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: STOC. pp.

169–178 (2009)
20. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput
and Accuracy. In: ICML. pp. 201–210 (2016)

21. Graepel, T., Lauter, K., Naehrig, M.: ML Confidential: Machine Learning on En-
crypted Data. In: ICISC. pp. 1–21. Springer (2012)

22. He, K., Zhang, X., Ren, S., Sun, J.: Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual recognition. In: ECCV. pp. 346–361. Springer (2014)

23. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected
Convolutional Networks. In: CVPR. pp. 4700–4708. IEEE (2017)

24. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional Architecture for Fast Feature Embed-
ding. In: ACMMM. pp. 675–678. ACM (2014)

25. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A Low Latency
Framework for Secure Neural Network Inference. In: USENIX. pp. 1651–1668
(2018)

26. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In: EU-
ROCRYPT. pp. 158–189. Springer (2018)

27. Khan, F.S., van de Weijer, J., Anwer, R.M., Bagdanov, A.D., Felsberg, M., Laak-
sonen, J.: Scale Coding Bag of Deep Features for Human Attribute and Action
Recognition. Machine Vision and Applications 29(1), 55–71 (2018)

28. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images.
Technical report, University of Toronto (2009)
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A Preliminaries on Secure Multiparty Computation

Secure Multiparty Computation (MPC) is a cryptographic method allowing a
set of parties to jointly compute a function on their inputs, without revealing
the inputs to the rest of the parties. The two main security models used to
realize MPC are the passive, and active security model. In the passive security
model, we assume that the protocol participants follow the protocol specification
honestly, but they try to learn as much information as possible about the private
inputs, during the protocol execution. In the active security model, we assume
that the protocol participants may actively, and arbitrarily deviate from the
protocol specification. Clearly, the active security model offers stronger security
guarantees. In both models we can construct protocols that require an honest
majority of the protocol participants to guarantee security, or protocols that
guarantee security assuming a dishonest majority of the protocol participants.
Our solution offers strong security guarantees, providing active static security,
with a dishonest majority. This means that an adversary may corrupt, prior to
the protocol execution, up to n − 1 out of the n protocol participants, without
leaking any private information, and without allowing any false protocol output
to be accepted as correct.

Our solution is implemented using the SPDZ MPC framework [12,13], and
that is why it enjoys the aforementioned security properties. The computational
and communication costs of the constructed protocols increase linearly in the
number of protocol participants. SPDZ is based on additive secret sharing, al-
lowing the participants to share their private inputs, in such a way that no
information about the private inputs is revealed to the individual participants.
Additive secret sharing enjoys an additively homomorphic property, meaning
that any linear function can be directly computed on the shares that each pro-
tocol participant holds, without requiring interaction amongst the parties. Upon
reconstruction of the shared output (which requires all parties to send their
shares of the secret), the result will be the correct result of the linear function,
as if it had been applied on the secret input. Thus, we can perform additions,
and multiplications with non-secret constant values on the secret shared inputs.
To perform multiplications between secret shared inputs, or any other non-linear
operation, we need to execute a secure interactive protocol between the MPC
servers.

The SPDZ approach works in two phases: a preprocessing phase, and an
online phase. The preprocessing phase can take place offline, anytime prior to
the execution of the online phase. This phase only requires the MPC servers to be
online, and not the inputting parties. During this phase the MPC servers create
shared randomness, which the client, and the classification algorithm provider
can later use to securely share their private inputs. Moreover, the MPC servers
create shared random values to be consumed during the online phase, and make
it efficient. For the online phase, the inputting parties first need to provide the
MPC servers with their private inputs. This is performed in a secure manner,
based on the Output Delivery protocol, and Input Supply protocol, proposed by
Damg̊ard et al. [11]. Then, the MPC servers proceed with the secure computation
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of the function prescribed by the protocol transcript. For more details on the
MPC techniques used, we refer the reader to the work of Damg̊ard et al. [13,12].

B Feature reduction: RBF or PCA?

From the algorithm provider’s point of view the goal is to keep the training
data private, so we choose to make public only the parameters of the RBF-Init
(Fig. 2). Publishing γ leaks no information about the training data, since if one
fixes γ in advance, they can vary the regularization parameter C to modify the
accuracy of the linear SVM. In our case we always kept γ = 2−13, and then just
tuned C accordingly.

Our experiments showed that the RBF technique reduces the prediction ac-
curacy, which was expected as it decreases the number of components remaining
after reduction (see Table 4). On the other hand, PCA requires to compute the
equation: z = Aᵀ ·(h−mh), which takes as input a point h and outputs a point z
with a length equal to the number of columns in A (denote this as nc). Note that
A, h,mh are all secret shared across the MPC engine. If we reduce the number
of components with PCA to nc = 256, then we observed that we get around 5%
better accuracy than using RBF with the same feature reduction parameter nc.

The main caveat of PCA is that we need to perform (shape ·nc) secure multi-
plications to convert our features, and then another (nc·n) secure multiplications
for computing the SVM probabilities. Hence, PCA incurs a total of nc(shape+n)
multiplications in the privacy-preserving domain, whereas RBF just (nc · n). In
application scenarios where the performance is of higher importance, and clas-
sification accuracy can be sacrificed (up to < 8%), our RBF approach is still
slightly more accurate than other private CNN’s (Table 4: CIFAR-10 accuracy,
versus Table 3: accuracy of MiniONN [33], and Gazelle [25]).

C Security parameters in SPDZ

The traditional way to split the computation in SPDZ is an input independent
preprocessing phase, where we produce triples, and an online phase, where we
plug in secret or public inputs and perform multiplications using the generated
triples.

Offline Phase: Since we use the LowGear [26] protocol to produce triples there
are two different flavors of parameters: a statistical κ and a computational λ.
These are reflected in different instances such as:

• Computational security λFHE is given by the FHE parameter selection.
• Statistical security κzk used as the soundness parameter in proofs of plaintext

knowledge.
• Statistical security κsac when sacrificing one triple to check the validity of

another one. When the triples are generated for inputs inside a field F large
enough then usually κsac = log2 F, assuming one sacrifices one triple per
output triple.
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Online Phase: In the online phase we have no computational security param-
eters but we do have different statistical security parameters:

• Statistical security for the MAC-check κmac which ensures that an active
adversary can pass a check with probability 2−κmac . When the inputs are
shared within a field F with one MAC per triple then κmac = log2 F. This
can be increased at the expense of introducing more MAC values.

• Statistical security κcomp for integer arithmetic (especially comparisons).
When a k-bit integer value is opened during comparison it is masked with
at least κcomp bits to guarantee that the output is within statistical distance
of 2−κcomp of a uniform distribution. Thus, to do a comparison in a field F we
need to make sure the value of k is less than log2 F− κcomp.

Global Statistical Security: We define the global statistical security param-
eters as

κ = min(κzk, κsac, κmac, κcomp).

In our paper we use two different settings for benchmarking:

• Standard benchmarks. These correspond to the experiments reported in
Table 2 and Table 4. Here the task was to aim for at least 40 bit statistical
security. Hence we first fixed λFHE = 128 and κzk = κcomp = 40. Since the
secret inputs are integers of at most 24 bits the other parameters such as
log2 F, κsac, κmac can all be set to 64.

• Bost et al. comparison. These correspond to the experiments reported in
Table 5. Here the task was to aim for at least 100 bit statistical security. As
before, we first fix λFHE = 128 and κzk = κcomp = 100. Then other parameters
have to accommodate the inputs bit length so log2 F, κsac, κmac were all set
to 128.
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