453 research outputs found

    Estudio de Caldas de BohĂ­ y sus aguas termales

    Get PDF

    Soliton solutions of Calogero model in harmonic potential

    Full text link
    A classical Calogero model in an external harmonic potential is known to be integrable for any number of particles. We consider here reductions which play a role of "soliton" solutions of the model. We obtain these solutions both for the model with finite number of particles and in a hydrodynamic limit. In the latter limit the model is described by hydrodynamic equations on continuous density and velocity fields. Soliton solutions in this case are finite dimensional reductions of the hydrodynamic model and describe the propagation of lumps of density and velocity in the nontrivial background.Comment: 25 pages, 2 figure

    Bloch Approximation in Homogenization and Applications

    Get PDF
    The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in this paper. As is well known, the homogenization process in a classical framework is concerned with the study of asymptotic behavior of solutions uεu^\varepsilon of boundary value problems associated with such operators when the period ε>0\varepsilon>0 of the coefficients is small. In a previous work by C. Conca and M. Vanninathan [SIAM J. Appl. Math., 57 (1997), pp. 1639--1659], a new proof of weak convergence as ε→0\varepsilon\to 0 towards the homogenized solution was furnished using Bloch wave decomposition. Following the same approach here, we go further and introduce what we call Bloch approximation, which will provide energy norm approximation for the solution uεu^\varepsilon. We develop several of its main features. As a simple application of this new object, we show that it contains both the first and second order correctors. Necessarily, the Bloch approximation will have to capture the oscillations of the solution in a sharper way. The present approach sheds new light and offers an alternative for viewing classical results

    Electrografting of BTSE: Zn films for advanced steel-aluminum joining by plastic deformation

    Get PDF
    This article presents the application of an adhesion promoting highly crosslinked ultrathin organic-inorganic hybrid layer applied to steel which promotes the subsequent joining process based on plastic deformation. The tensile shear results show that a significant increase of the bond strength between low-alloy steel (DC04) and aluminum (AW1050A H111), upon cold-pressure welding (CPW), could be achieved. Electrografting of an ultra-thin film of 1,2-bis(triethoxysilyl)ethane (BTSE) films on the steel surface was done from ethanolic solutions containing zinc ions. Based on surface spectroscopic analysis it is shown that silanol moieties present in the organosilane deposits can form stable chemical bonds with both the iron oxide covered steel and the aluminum oxide covered aluminum alloy. The successful modification of metal oxide surfaces with BTSE has been demonstrated via SEM-EDX, AFM, PM-IRRAS, and XPS measurements. In addition, electrochemical analysis of the BTSE:Zn films showed that the films lead to very good corrosion properties even at low thicknesses

    Spatial representation of temporal information through spike timing dependent plasticity

    Get PDF
    We suggest a mechanism based on spike time dependent plasticity (STDP) of synapses to store, retrieve and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated input of a limited number of of temporal sequences the system is able to complete the temporal sequence upon receiving the input of a fraction of them. This is an example of effective unsupervised learning in an biologically realistic system. We investigate the dependence of learning success on entrainment time, system size and presence of noise. Possible applications include learning of motor sequences, recognition and prediction of temporal sensory information in the visual as well as the auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons

    Type 1 Diabetes Mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets

    Get PDF
    [Abstract] Microencapsulation of pancreatic islets for the treatment of Type I Diabetes Mellitus (T1DM) generates a high quantity of empty microcapsules, resulting in high therapeutic graft volumes that can enhance the host’s immune response. We report a 3D printed microfluidic magnetic sorting device for microcapsules purification with the objective to reduce the number of empty microcapsules prior transplantation. In this study, INS1E pseudoislets were microencapsulated within alginate (A) and alginate-poly-L-lysine-alginate (APA) microcapsules and purified through the microfluidic device. APA microcapsules demonstrated higher mechanical integrity and stability than A microcapsules, showing better pseudoislets viability and biological function. Importantly, we obtained a reduction of the graft volume of 77.5% for A microcapsules and 78.6% for APA microcapsules. After subcutaneous implantation of induced diabetic Wistar rats with magnetically purified APA microencapsulated pseudoislets, blood glucose levels were restored into normoglycemia (<200 mg/dL) for almost 17 weeks. In conclusion, our described microfluidic magnetic sorting device represents a great alternative approach for the graft volume reduction of microencapsulated pseudoislets and its application in T1DM disease.Universidad del País Vasco; ESPPOC 16/65Universidad del País vasco; EHUa16/06Gobierno Vasco; IT907-16Gobierno Vasco; KK-2017/0000088Gobierno Vasco; 307616FKA4Ministerio de Economía y Competitividad; RYC-2012-1079
    • …
    corecore