2,293 research outputs found

    ADB–OECD Study on Enhancing Financial Accessibility for SMEs: Lessons from Recent Crises

    Get PDF
    During the era of global financial uncertainty, stable access to appropriate funding sources has been much harder for small and medium-sized enterprises (SMEs). The global financial crisis impacted SMEs and entrepreneurs disproportionately, exacerbating their traditional financing constraints. The financial conditions of many SMEs were weakened by the drop in demand for goods and services and the credit tightening. The sovereign debt crisis that hit several European countries contributed to further deterioration in bank lending activities, which negatively affected private sector development. The global regulatory response to financial crises, such as the Basel Capital Accord, while designed to reduce systemic risks may also constrain bank lending to SMEs. In particular, Basel III requires banks to have tighter risk management as well as greater capital and liquidity. Resulting asset preference and deleveraging of banks, particularly European banks with significant presence in Asia, could limit the availability of funding for SMEs in Asia and the Pacific. Lessons from the recent financial crises have motivated many countries to consider SME access to finance beyond conventional bank credit and to diversify their national financial system. Improving SME access to finance is a policy priority at the country and global level. Poor access to finance is a critical inhibiting factor to the survival and growth potential of SMEs. Financial inclusion is thus key to the development of the SME sector, which is a driver of job creation and social cohesion and takes a pivotal role in scaling up national economies. The Asian Development Bank (ADB) and the Organisation for Economic Co-operation and Development (OECD) have recognized that it is crucial to develop a comprehensive range of policy options on SME finance, including innovative financing models. With this in mind, sharing Asian and OECD experiences on SME financing would result in insightful discussions on improving SME access to finance at a time of global financial uncertainty. Based on intensive discussions in two workshops organized by ADB in Manila on 6–7 March 2013 and by OECD in Paris on 21 October 2013, the two organizations together compiled this study report on enhancing financial accessibility for SMEs, especially focusing on lessons from the past and recent crises in Asia and OECD countries. The report takes a comparative look at ADB and OECD experiences, and aims to identify promising policy solutions for creating an SME base that is resilient to crisis, from a viewpoint of access to finance, and which can help drive growth and development

    The gains from preferential tax regimes reconsidered

    Get PDF
    The EU policy against harmful tax competition aims at eliminating tax policies targeted at attracting the internationally mobile tax base. We construct an imperfectly competitive model of costly trade between two countries. In setting their corporate taxes, governments non-cooperatively decide whether to discriminate between internationally mobile and immobile firms. We find the Nash equilibrium tax regimes. When trade costs are high countries impose a uniform tax on all firms while nations will discriminate between mobile and immobile firms when costs are low. At some trade costs, fiscal competition results in tax discrimination despite uniform taxation being socially preferable

    Light and Shadows of the Korean Healthcare System

    Get PDF
    This article reviewed achievements and challenges of the National Health Insurance of the Republic of Korea and shared thoughts on its future directions. Starting with large workplaces of 500 or more employees in 1977, Korea's National Health Insurance successfully achieved universal coverage within just 12 yr in 1989. This amazing pace of growth was possible due to a positive combination of strong political will and rapid economic growth. Key features of Korea's experience in achieving universal coverage include 1) gradual expansion of coverage, 2) careful consideration to maintain sound insurance finances, and 3) introducing multiple health insurance societies (multiple payer system) at the initial stage. Introduction of the health insurance has dramatically improved Korea's health indicators and has fueled the rapid growth of basic medical infrastructure including medical institutions and professionals. On the other hand, the successful expansion was not free from side-effects. Although coverage has gradually expanded, benefits are still relatively low. The current situation warrants concern because coverage expansion is driven by welfare populism asserted by irresponsible political slogans and lacks a social consensus on basic principles and philosophy regarding the expansion. Concentration of patients to a few large prestigious hospitals as well as the inefficiencies resulting from a colossal single-payer system should also be pointed out

    Drivers of Innovation Using BIM in Architecture, Engineering, and Construction Firms

    Full text link
    This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://doi.org/10.1061/9780784482889.023[Otros] Architecture, engineering, and construction (AEC) firms need to innovate in order to increase their business¿ competitiveness. Many companies around the world are considering the possibility of implementing building information modelling (BIM) in their projects without knowing its actual benefits for the business. The current literature recognizes certain barriers to BIM implementation; therefore, considering these barriers, this work proposes a holistic model that allows managers to explain how BIM can play an important role for the success of the AEC companies. The pillars of the model are a collaborative culture and training of employees in order to break down technological barriers. This way, BIM can help AEC companies to innovate. This proposal takes into consideration the three phases of the infrastructure life-cycle. In the design phase, the model considers 3D shape, scheduling (4D), costs (5D), and sustainability (6D). In the construction phase, the model focuses on supply chain and quality management. During the operation phase, the model is related to the virtual management of maintenance activities. Drivers of innovation should consider several facets: marketing, technology, organization, processes, and products. This model aims to enlighten the positive effects of a good strategic management using BIM on innovation activities in each of the phases of the infrastructure life-cycleVillena, F.; García-Segura, T.; Pellicer, E. (2020). Drivers of Innovation Using BIM in Architecture, Engineering, and Construction Firms. American Society of Civil Engineers. 210-222. https://doi.org/10.1061/9780784482889.023S210222Aibinu, A., & Venkatesh, S. (2014). Status of BIM Adoption and the BIM Experience of Cost Consultants in Australia. Journal of Professional Issues in Engineering Education and Practice, 140(3), 04013021. doi:10.1061/(asce)ei.1943-5541.0000193Alshubbak, A., Pellicer, E., Catalá, J., & Teixeira, J. M. C. (2015). A MODEL FOR IDENTIFYING OWNER’S NEEDS IN THE BUILDING LIFE CYCLE. Journal of Civil Engineering and Management, 21(8), 1046-1060. doi:10.3846/13923730.2015.1027257Autodesk Inc. (2012). Building information modelling [online] [8-06-2012]. Available from Internet: http://usa.autodesk.comAzhar, S., Khalfan, M., & Maqsood, T. (2015). Building information modelling (BIM): now and beyond. Construction Economics and Building, 12(4), 15-28. doi:10.5130/ajceb.v12i4.3032Blayse, A. M., & Manley, K. (2004). Key influences on construction innovation. Construction Innovation, 4(3), 143-154. doi:10.1108/14714170410815060Boland, R. J., Lyytinen, K., & Yoo, Y. (2007). Wakes of Innovation in Project Networks: The Case of Digital 3-D Representations in Architecture, Engineering, and Construction. Organization Science, 18(4), 631-647. doi:10.1287/orsc.1070.0304Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of Building Information Modelling (BIM). International Journal of Project Management, 31(7), 971-980. doi:10.1016/j.ijproman.2012.12.001Chen, Y.-S. (2007). The Driver of Green Innovation and Green Image – Green Core Competence. Journal of Business Ethics, 81(3), 531-543. doi:10.1007/s10551-007-9522-1Cheng, Y.-M. (2018). Building Information Modeling for Quality Management. Proceedings of the 20th International Conference on Enterprise Information Systems. doi:10.5220/0006796703510358Chesbrough, H., & Crowther, A. K. (2006). Beyond high tech: early adopters of open innovation in other industries. R and D Management, 36(3), 229-236. doi:10.1111/j.1467-9310.2006.00428.xDavies, R., & Harty, C. (2013). Implementing ‘Site BIM’: A case study of ICT innovation on a large hospital project. Automation in Construction, 30, 15-24. doi:10.1016/j.autcon.2012.11.024Du Plessis, M. (2007). The role of knowledge management in innovation. Journal of Knowledge Management, 11(4), 20-29. doi:10.1108/13673270710762684Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2008). BIM Handbook. doi:10.1002/9780470261309Elmualim, A., & Gilder, J. (2013). BIM: innovation in design management, influence and challenges of implementation. Architectural Engineering and Design Management, 10(3-4), 183-199. doi:10.1080/17452007.2013.821399Erdogan, B., Anumba, C. J., Bouchlaghem, D., & Nielsen, Y. (2008). Collaboration Environments for Construction: Implementation Case Studies. Journal of Management in Engineering, 24(4), 234-244. doi:10.1061/(asce)0742-597x(2008)24:4(234)Fox, S., & Hietanen, J. (2007). Interorganizational use of building information models: potential for automational, informational and transformational effects. Construction Management and Economics, 25(3), 289-296. doi:10.1080/01446190600892995Franco, J., Mahdi, F., & Abaza, H. (2015). Using Building Information Modeling (BIM) for Estimating and Scheduling, Adoption Barriers. Universal Journal of Management, 3(9), 376-384. doi:10.13189/ujm.2015.030905Hameed, M. A., Counsell, S., & Swift, S. (2012). A conceptual model for the process of IT innovation adoption in organizations. Journal of Engineering and Technology Management, 29(3), 358-390. doi:10.1016/j.jengtecman.2012.03.007Harness S. H. (2008). 2008 documents AIA advance the use of BIM and integrated project delivery [online] [5 Diciembre 2008]. Available from Internet: http://www.aia.orgHobday, M. (2005). Firm-level Innovation Models: Perspectives on Research in Developed and Developing Countries. Technology Analysis & Strategic Management, 17(2), 121-146. doi:10.1080/09537320500088666Hong Y. Hammad A. Sepasgozar S. and Akbarnezhad A. (2019). "BIM adoption model for small and medium construction organizations in Australia" Engineering Construction and Architectural Management 26(2) 154-183. https://doi.org/10.1108/ECAM-04-2017-006410.1108/ECAM-04-2017-0064Hurley, R. F., & Hult, G. T. M. (1998). Innovation, Market Orientation, and Organizational Learning: An Integration and Empirical Examination. Journal of Marketing, 62(3), 42-54. doi:10.1177/002224299806200303Khosrowshahi, F., & Arayici, Y. (2012). Roadmap for implementation of BIM in the UK construction industry. Engineering, Construction and Architectural Management, 19(6), 610-635. doi:10.1108/09699981211277531Kleinschmidt, E. J., de Brentani, U., & Salomo, S. (2007). Performance of Global New Product Development Programs: A Resource-Based View. Journal of Product Innovation Management, 24(5), 419-441. doi:10.1111/j.1540-5885.2007.00261.xLee, S., Yu, J., & Jeong, D. (2015). BIM Acceptance Model in Construction Organizations. Journal of Management in Engineering, 31(3), 04014048. doi:10.1061/(asce)me.1943-5479.0000252Lu, Q., & Lee, S. (2017). Image-Based Technologies for Constructing As-Is Building Information Models for Existing Buildings. Journal of Computing in Civil Engineering, 31(4), 04017005. doi:10.1061/(asce)cp.1943-5487.0000652Miettinen, R., & Paavola, S. (2014). Beyond the BIM utopia: Approaches to the development and implementation of building information modeling. Automation in Construction, 43, 84-91. doi:10.1016/j.autcon.2014.03.009Motamedi, A., Hammad, A., & Asen, Y. (2014). Knowledge-assisted BIM-based visual analytics for failure root cause detection in facilities management. Automation in Construction, 43, 73-83. doi:10.1016/j.autcon.2014.03.012Oduyemi O Okoroh MI Fajana OS. (2017). "The application and barriers of BIM in sustainable building design" Journal of Facilities Management 15(1):15−34. https://doi.org/10.1108/JFM-03-2016-0008.10.1108/JFM-03-2016-0008Olawumi, T. O., Chan, D. W. M., Wong, J. K. W., & Chan, A. P. C. (2018). Barriers to the integration of BIM and sustainability practices in construction projects: A Delphi survey of international experts. Journal of Building Engineering, 20, 60-71. doi:10.1016/j.jobe.2018.06.017Ozorhon, B., & Oral, K. (2017). Drivers of Innovation in Construction Projects. Journal of Construction Engineering and Management, 143(4), 04016118. doi:10.1061/(asce)co.1943-7862.0001234Papadonikolaki, E. (2018). Loosely Coupled Systems of Innovation: Aligning BIM Adoption with Implementation in Dutch Construction. Journal of Management in Engineering, 34(6), 05018009. doi:10.1061/(asce)me.1943-5479.0000644Pellicer, E., Yepes, V., Correa, C. L., & Alarcón, L. F. (2014). Model for Systematic Innovation in Construction Companies. Journal of Construction Engineering and Management, 140(4). doi:10.1061/(asce)co.1943-7862.0000700Poirier, E., Forgues, D., & Staub-French, S. (2016). Collaboration through innovation: implications for expertise in the AEC sector. Construction Management and Economics, 34(11), 769-789. doi:10.1080/01446193.2016.1206660Poirier, E., Staub-French, S., & Forgues, D. (2015). Embedded contexts of innovation. Construction Innovation, 15(1), 42-65. doi:10.1108/ci-01-2014-0013Rowlinson S. Collins R. Tuuli M. and Jia A. (2010). Implementation of Building Information Modeling (BIM) in Construction: A Comparative Case Study. AIP Conference Proceedings. 1233. 572-577. 10.1063/1.3452236.Selçuk Çıdık, M., Boyd, D., & Thurairajah, N. (2017). Innovative Capability of Building Information Modeling in Construction Design. Journal of Construction Engineering and Management, 143(8), 04017047. doi:10.1061/(asce)co.1943-7862.0001337Stock, R. M., Six, B., & Zacharias, N. A. (2012). Linking multiple layers of innovation-oriented corporate culture, product program innovativeness, and business performance: a contingency approach. Journal of the Academy of Marketing Science, 41(3), 283-299. doi:10.1007/s11747-012-0306-5Succar, B., & Kassem, M. (2015). Macro-BIM adoption: Conceptual structures. Automation in Construction, 57, 64-79. doi:10.1016/j.autcon.2015.04.018Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, 18(3), 357-375. doi:10.1016/j.autcon.2008.10.003Taylor, J. E., & Bernstein, P. G. (2009). Paradigm Trajectories of Building Information Modeling Practice in Project Networks. Journal of Management in Engineering, 25(2), 69-76. doi:10.1061/(asce)0742-597x(2009)25:2(69)Tekla Corporation. (2013). Basic concepts [online] [ 16 Enero 2013]. Available from Internet: http://www.tekla.comVillena Manzanares, F., & Galiano Coronil, A. (2017). EL DESARROLLO URBANO SOSTENIBLE Y SUS IMPLICACIONES PARA LAS EMPRESAS Y LOS TERRITORIOS. Revista de Estudios Empresariales. Segunda Época, (1). doi:10.17561/ree.v0i1.3185Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings — Literature review and future needs. Automation in Construction, 38, 109-127. doi:10.1016/j.autcon.2013.10.023Whyte, J., Bouchlaghem, N., Thorpe, A., & McCaffer, R. (2000). From CAD to virtual reality: modelling approaches, data exchange and interactive 3D building design tools. Automation in Construction, 10(1), 43-55. doi:10.1016/s0926-5805(99)00012-6Wischnevsky, J. D., Damanpour, F., & Méndez, F. A. (2011). Influence of Environmental Factors and Prior Changes on the Organizational Adoption of Changes in Products and in Technological and Administrative Processes. British Journal of Management, 22(1), 132-149. doi:10.1111/j.1467-8551.2010.00700.xWong, K., & Fan, Q. (2013). Building information modelling (BIM) for sustainable building design. Facilities, 31(3/4), 138-157. doi:10.1108/02632771311299412Yepes, V., Pellicer, E., Alarcón, L. F., & Correa, C. L. (2016). Creative Innovation in Spanish Construction Firms. Journal of Professional Issues in Engineering Education and Practice, 142(1), 04015006. doi:10.1061/(asce)ei.1943-5541.0000251Yusof N. Seng Lai K and Mustafa Kamal E. (2017). "Characteristics of innovation orientations in construction companies" Journal of Engineering Design and Technology 15(4) 436-455. https://doi.org/10.1108/JEDT-06-2016-003710.1108/JEDT-06-2016-0037Zhou, Y., Yang, Y., & Yang, J.-B. (2019). Barriers to BIM implementation strategies in China. Engineering, Construction and Architectural Management, 26(3), 554-574. doi:10.1108/ecam-04-2018-015

    Developmental Neurotoxicity Study of Dietary Bisphenol A in Sprague-Dawley Rats

    Get PDF
    This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD (SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively)

    Problems in deriving Italian regional differences in intelligence from 2009 PISA data

    Get PDF
    Recent results of international assessment programs (e.g., PISA) have shown a large difference in high school students' performance between northern and southern Italy. On this basis, it has been argued that the discrepancy reflects differences in average intelligence of the inhabitants of regions and is associated with genetic factors (Lynn, 2010a and Lynn, 2012). This paper provides evidence in contrast to this conclusion by arguing that the use of PISA data to make inferences about regional differences in intelligence is questionable, and in any case, both PISA and other recent surveys on achievement of North and South Italy students offer some results that do not support Lynn's conclusions. In particular, a 2006–2009 PISA data comparison shows a relevant decrease in the North–South difference in only three years, particularly evident in the case of a single region (Apulia). Other large surveys (including INVALSI-2011) offer different results; age differences suggest that schooling could have an important role

    A comparative analysis of national media responses to the OECD survey of adult skills: policy making from the global to the local?

    Get PDF
    OECD’s Programme of International Assessment of Adult Competencies (PIAAC) is put forward as a landmark development in the lifelong monitoring and international comparison of education. PIAAC’s first round of the Survey of Adult Skills compared performance in Literacy, Numeracy and Problem Solving in Technology-Rich Environments across 24 countries. However, the translation of any OECD agenda into national policies is mediated by many actors including the media. This paper examines and compares how national media of Japan, England and France reported on the PIAAC results of their countries, and the extent to which these reports mirror key messages from the OECD’s Country Notes. It begins to trace how the OECD PIAAC agendas materialise into national policies. Although their role in this initial period was limited, we argue the roles of the media together with other policy actors must be monitored as they interact to shape possibilities for sustainable adult education policies
    corecore