151 research outputs found

    Biomolecular Evidence of Early Human Occupation of a High-Altitude Site in Western Central Asia During the Holocene

    Get PDF
    Reconstructions of early human occupation of high-altitude sites in Central Asia and possible migration routes during the Holocene are limited due to restricted archeological sample material. Consequently, there is a growing interest in alternative approaches to investigate past anthropogenic activity in this area. In this study, fecal biomarkers preserved in lake sediments from Lake Chatyr Kol (Tian Shan, Kyrgyzstan) were analyzed to reconstruct the local presence of humans and pastoral animals in this low-human-impact area in the past. Spanning the last ∼11,700 years, this high-altitude site (∼3,500 m above sea level) provides a continuous record of human occupancy in Western Central Asia. An early increase of human presence in the area during the mid-Holocene is marked by a sharp peak of the human fecal sterol coprostanol and its epimer epicoprostanol in the sediments. An associated increase in 5β-stigmastanol, a fecal biomarker deriving from herbivores indicates a human occupancy that most probably largely depended upon livestock. However, sterol profiles show that grazing animals had already occupied the catchment area of Lake Chatyr Kol before and also after a significant presence of humans. The biomarker evidence in this study demonstrates an early presence of humans in a high-altitude site in Central Asia at ∼5,900–4,000 a BP. Dry environmental conditions during this period likely made high altitude regions more accessible. Moreover, our results help to understand human migration in Western Central Asia during the early and mid-Holocene as part of a prehistoric Silk Road territory

    Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)

    Get PDF
    In response to rising CO2concentrations and increasing global sea surface temperatures,oxygen minimum zones (OMZ), or“dead zones”, are expected to expand. OMZs are fueled by highprimary productivity, resulting in enhanced biological oxygen demand at depth, subsequent oxygen depletion, and attenuation of remineralization. This results in the deposition of organic carbon‐rich sediments. Carbon drawdown is estimated by biogeochemical models; however, a major process is ignored: carbon fixation in the mid‐and lower water column. Here, we show that chemoautotrophic carbon fixation is important in the Arabian Sea OMZ; and manifests in a13C‐depleted signature of sedimentary organic carbon. We determined theδ13C values of Corg deposited in close spatial proximity but over a steepbottom‐water oxygen gradient, and theδ13C composition of biomarkers of chemoautotrophic bacteriacapable of anaerobic ammonia oxidation (anammox). Isotope mixing models show that detritus fromanammox bacteria or other chemoautotrophs likely forms a substantial part of the organic matter depositedwithin the Arabian Sea OMZ (~17%), implying that the contribution of chemoautotrophs to settling organicmatter is exported to the sediment. This has implications for the evaluation of past, and future, OMZs:biogeochemical models that operate on the assumption that all sinking organic matter is photosynthetically derived, without new addition of carbon, could significantly underestimate the extent of remineralization. Oxygen demand in oxygen minimum zones could thus be higher than projections suggest, leading to a more intense expansion of OMZs than expected

    Human-induced fire regime shifts during 19th century industrialization: A robust fire regime reconstruction using northern Polish lake sediments

    No full text
    Fire regime shifts are driven by climate and natural vegetation changes, but can be strongly affected by human land management. Yet, it is poorly known how humans have influenced fire regimes prior to active wildfire suppression. Among the last 250 years, the human contribution to the global increase in fire occurrence during the mid-19th century is especially unclear, as data sources are limited. Here, we test the extent to which forest management has driven fire regime shifts in a temperate forest landscape. We combine multiple fire proxies (macroscopic charcoal and fire-related biomarkers) derived from highly resolved lake sediments (i.e., 3–5 years per sample), and apply a new statistical approach to classify source area- and temperature-specific fire regimes (biomass burnt, fire episodes). We compare these records with independent climate and vegetation reconstructions. We find two prominent fire regime shifts during the 19th and 20th centuries, driven by an adaptive socio-ecological cycle in human forest management. Although individual fire episodes were triggered mainly by arson (as described in historical documents) during dry summers, the biomass burnt increased unintentionally during the mid-19th century due to the plantation of flammable, fast-growing pine tree monocultures needed for industrialization. State forest management reacted with active fire management and suppression during the 20th century. However, pine cover has been increasing since the 1990s and climate projections predict increasingly dry conditions, suggesting a renewed need for adaptations to reduce the increasing fire risk. © 2019 Dietze et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Fatty Acid and Hopanoid Adaption to Cold in the Methanotroph Methylovulum psychrotolerans

    Get PDF
    Three strains of aerobic psychrotolerant methanotrophic bacteria Methylovulum psychrotolerans, isolated from geographically remote low-temperature environments in Northern Russia, were grown at three different growth temperatures, 20, 10 and 4°C and were found to be capable of oxidizing methane at all temperatures. The three M. psychrotolerans strains adapted their membranes to decreasing growth temperature by increasing the percent of unsaturated fatty acid (FAs), both for the bulk and intact polar lipid (IPL)-bound FAs. Furthermore, the ratio of βOH-C16:0 to n-C16:0 increased as growth temperature decreased. The IPL head group composition did not change as an adaption to temperature. The most notable hopanoid temperature adaptation of M. psychrotolerans was an increase in unsaturated hopanols with decreasing temperature. As the growth temperature decreased from 20 to 4°C, the percent of unsaturated M. psychrotolerans bulk-FAs increased from 79 to 89 % while the total percent of unsaturated hopanoids increased from 27 to 49 %. While increased FA unsaturation in response to decreased temperature is a commonly observed response in order to maintain the liquid-crystalline character of bacterial membranes, hopanoid unsaturation upon cold exposition has not previously been described. In order to investigate the mechanisms of both FA and hopanoid cold-adaption in M. psychrotolerans we identified genes in the genome of M. psychrotolerans that potentially code for FA and hopanoid desaturases. The unsaturation of hopanoids represents a novel membrane adaption to maintain homeostasis upon cold adaptation

    Seasonal variability in the abundance and stable carbon-isotopic composition of lipid biomarkers in suspended particulate matter from a stratified equatorial lake (Lake Chala, Kenya/Tanzania): Implications for the sedimentary record

    Get PDF
    We studied the distribution and stable carbon-isotopic (δ13C) composition of various lipid biomarkers in suspended particulate matter (SPM) from the water column of Lake Chala, a permanently stratified crater lake in equatorial East Africa, to evaluate their capacity to reflect seasonality in water-column processes and associated changes in the lake's phytoplankton community. This lake has large seasonal variation in water-column dynamics (stratified during wet seasons and mixing during dry seasons) with associated phytoplankton succession. We analyzed lipid biomarkers in SPM collected monthly at 5 depths (0–80 m) from September 2013 to January 2015. Seasonal variation in total phytoplankton biovolume is strongly reflected in the concentration of phytadienes, a derivative of the general photosynthetic pigment chlorophyll. The wax and wane of several specific biomarker lipids between June and December 2014 reflect pronounced phytoplankton succession after deep mixing, starting with a long and sustained chlorophyte bloom (reflected by C23:1, C25:1 and Cn-alkenes, and C21 and C23n-alkanes), followed by a peak in diatoms between July and October (loliolide and isololiolide), and then eustigmatophytes (C30 and C32 1,15 diols) once stratification resumes in October. Peak abundance of the C19:1n-alkene during shallow mixing of the water column in January–February 2014 can be tentatively linked to the seasonal distribution of cyanobacteria. The concentration, seasonal variability, and low δ13C values of the C28 fatty acid in the SPM suggest that this biomarker is produced in the water column of Lake Chala instead of having the typically assumed vascular plant origin. The δ13C signature of particulate carbon and all aquatic biomarkers become increasingly more negative (by up to 16‰) during mixing-induced episodes of high productivity, whereas enrichment would be expected during such blooms. This reversed fractionation may be attributed to chemically enhanced diffusion, which generates depleted HCO3− under high pH (>9) conditions, as occur in the epilimnion of Lake Chala during periods of high productivity. The influence of this process can potentially explain previously observed 13C-depleted carbon signatures in the paleorecord of Lake Chala, and should be considered prior to paleorecord interpretation of organic-matter δ13C values derived (partially) from aquatic organisms in high-pH, i.e. alkaline, lake

    High-­resolution bio-­ and chemostratigraphy of an expanded record of Oceanic Anoxic Event 2 (Late Cenomanian–Early Turonian) at Clot Chevalier, near Barrême, SE France (Vocontian Basin, SE France)

    Get PDF
    A newly located exposure of the Niveau Thomel, an organic-­‐rich level at the Cenomanian–Turonian boundary, provides a highly expanded record of Oceanic Anoxic Event (OAE) 2, excepted for the lower relatively condensed glauconite-­rich part of the section. The new locality, close to Barrême in the Vocontian Basin, SE France, is developed in deep-­water hemi-­pelagic facies (shales, marls, marly limestones, variably enriched in organic matter) and provides an improved understanding of palaeoceanographic events associated with OAE 2. Investigation of the biostratigraphy (nannofossils and planktonic foramininfera), organic and inorganic geochemistry (bulk carbonate δ18O, total organic carbon (TOC), bulk organic, biomarker-specific and carbonate δ13C, major and trace elements, and Rock-­Eval data) has allowed characterization of the sediments in great detail. The combined study further constrains the detailed relationship between bio-­ and chemostratigraphy (particularly with respect to the details of the well-­displayed positive carbon-­‐isotope excursion) for this interval. The section also provides new evidence, in the form of a positive oxygen-­isotope excursion and an offset between carbonate and organic-­carbon carbon-­isotope records, which confirms the importance of cooling accompanied by a drop in dissolved CO2 in near-­surface waters during the Plenus Cold Event that characterized the early part of OAE 2. Evidence for increased oxygenation of bottom waters, together with elevated concentrations of redox-­sensitive and chalcophilic elements registered elsewhere through the level of the Plenus Cold Event, may be reflected in enhanced concentrations of iron (in glauconite) and nickel in coeval strata from the Clot Chevalier section

    Acetate degradation at low pH by the moderately acidophilic sulfate reducer Acididesulfobacillus acetoxydans gen. nov. sp. nov.

    Get PDF
    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.816605/full#supplementary-materialIn acid drainage environments, biosulfidogenesis by sulfate-reducing bacteria (SRB) attenuates the extreme conditions by enabling the precipitation of metals as their sulfides, and the neutralization of acidity through proton consumption. So far, only a handful of moderately acidophilic SRB species have been described, most of which are merely acidotolerant. Here, a novel species within a novel genus of moderately acidophilic SRB is described, Acididesulfobacillus acetoxydans gen. nov. sp. nov. strain INE, able to grow at pH 3.8. Bioreactor studies with strain INE at optimum (5.0) and low (3.9) pH for growth showed that strain INE alkalinized its environment, and that this was more pronounced at lower pH. These studies also showed the capacity of strain INE to completely oxidize organic acids to CO2, which is uncommon among acidophilic SRB. Since organic acids are mainly in their protonated form at low pH, which increases their toxicity, their complete oxidation may be an acid stress resistance mechanism. Comparative proteogenomic and membrane lipid analysis further indicated that the presence of saturated ether-bound lipids in the membrane, and their relative increase at lower pH, was a protection mechanism against acid stress. Interestingly, other canonical acid stress resistance mechanisms, such as a Donnan potential and increased active charge transport, did not appear to be active.This work was financed by ERC grants to AS (project 323009) and JS (project 694569), the research program TTW under project number 14797, which is financed by the Dutch Research Council (NWO) to IS-A, and a Gravitation grant (SIAM 024.002.002) of the Netherlands Ministry of Education, Culture and Science to AS and JS.info:eu-repo/semantics/publishedVersio

    Paleoclimate reconstruction of the last 36 kyr based on branched glycerol dialkyl glycerol tetraethers in the Padul palaeolake record (Sierra Nevada, southern Iberian Peninsula)

    Get PDF
    Quantitative continental climate reconstructions covering the last glacial cycle from the Iberian Peninsula are scarce. In order to fill this gap, we obtained for the first time a high-resolution mean annual air temperature (MAAT) record based on the distribution of specific bacterial membrane lipids (i.e., branched glycerol dialkyl glycerol tetraethers; brGDGTs) from the last 36.0-4.7 kyr palaeolake record recovered by the Padul-15-05 sedimentary core (Padul, Sierra Nevada, southern Iberia). The fractional abundance of the three major groups of GDGTs present in the Padul sediments, GDGT-0, crenarchaeol and the summed brGDGTs, is comparable with that of other shallow and small (Peer reviewe

    Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students

    Get PDF
    Microplastics enter the environment as a result of larger plastic items breaking down (‘secondary’) and from particles originally manufactured at that size (‘primary’). Personal care productsare an important contributor of secondary microplastics (typically referred to as ‘microbeads’), for example in toothpaste, facial scrubs and soaps. Consumers play an important role in influencing the demand for these products and therefore any associated environmental consequences. Hence we need to understand public perceptions in order to help reduce emissions of microplastics. This study explored awareness of plastic microbeads in personal care products in three groups: environmental activists, trainee beauticians and university students in South West England. Focus groups were run, where participants were shown the quantity of microbeads found in individual high-street personal care products. Qualitative analysis showed that while the environmentalists were originally aware of the issue, it lacked visibility and immediacy for the beauticians and students. Yet when shown the amount of plastic in a range of familiar everyday personal care products, all participants expressed considerable surprise and concern at the quantities and potential impact. Regardless of any perceived level of harm in the environment, the consensus was that their use was unnatural and unnecessary. This research could inform future communications with the public and industry as well as policy initiatives to phase out the use of microbeads

    Sources and genetic controls of lipid biomarkers involved in paleotemperature proxies

    No full text
    Lipids in marine sediments have been widely used in proxies to reconstruct Sea Surface Temperatures (SSTs). For example, the U_37^K proxy, based on the degree of unsaturation of long chain alkenones synthesized by haptophytes, the TEX86, based on glycerol dialkyl glycerol tetraethers (GDGTs) produced by Thaumarchaeota and the LDI, based on long chain diols by Eustigmatophyte algae. However, there is still some uncertainty regarding the biological producers of these lipids and their biosynthetic pathways. In this thesis, the pelagic and benthic archaeal community composition was investigated in multiple marine regions and compared it with the composition of GDGTs. This showed that Marine Group II Euryarchaeota, one of the most abundant marine archaeal groups, are incapable of producing these lipids. Studying three water columns in the Mediterranean Sea indicated the presence of deep-water Thaumarchaeota, which are potentially responsible for the overestimation of reconstructed SSTs in this region. Further, the biosynthetic pathway of long chain alkenones was investigated in a culture of the Haptophyte Emiliania huxleyi and identified a potential gene coding for the desaturase responsible for transforming C37:2 into C37:3 alkenones. In the African Lake Challa, a correlation was observed between the abundance of LCDs and uncultured Eustigmatophyceae algae. Besides, seasonal changes in LCD composition suggest multiple producers or changes in the LCD composition of the same producer within an annual cycle. The combination of omic (lipid and DNA) approaches in this thesis has proven to be key in increasing our knowledge on the biological producers of lipids involved in paleotemperature proxies
    • …
    corecore