5 research outputs found
Interaction of β-Sheet Folds with a Gold Surface
The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance
Spatial Model Assessment of P Transport from Soils to Waterways in an Eastern Mediterranean Watershed
P index is a management tool commonly used to identify critical source areas (CSAs) in agro-catchments. We tested the applicability of several P-index models adjusted to Eastern Mediterranean conditions. On the basis of model structure and data requirements, we selected the Arkansas model and two models with the RUSLE equation and runoff curve number (RCN). Concurrently, we developed a GIS-based Hermon-P model which was designed to simulate rainfall–runoff events representing the major nutrient-transport mechanism in Eastern Mediterranean. The P index values computed by the Arkansas and RUSLE models exhibited low correlation (r2 < 0.32) with the measured soluble reactive (SRP) and total P (TP), while the RCN model result correlations were somewhat higher (r2 = 0.53 for SRP and 0.45 for TP). High correlations between the calculated and measured P during rainfall–runoff events were only achieved with the Hermon model (r2 = 0.77 to 0.9). These high coefficients resulted from avoiding subjective categorization of the continuous variables and using the measured site-specific erosional predictors instead. On one occasion, during the first significant runoff event of the year, the Hermon model failed to predict total P in the stream water (r2 = 0.14) because of considerable resuspension of stream sediments. Most of the P-index models are based on the perceptual transfer-continuum framework that was developed for temperate agro-catchments; this framework does not consider P resuspension along streams during rainfall–runoff events. Hence, a new set of equations should be added to the P index to account for potential resuspension in Eastern Mediterranean streams at the beginning of the hydrological year
Spatial Model Assessment of P Transport from Soils to Waterways in an Eastern Mediterranean Watershed
P index is a management tool commonly used to identify critical source areas (CSAs) in agro-catchments. We tested the applicability of several P-index models adjusted to Eastern Mediterranean conditions. On the basis of model structure and data requirements, we selected the Arkansas model and two models with the RUSLE equation and runoff curve number (RCN). Concurrently, we developed a GIS-based Hermon-P model which was designed to simulate rainfall–runoff events representing the major nutrient-transport mechanism in Eastern Mediterranean. The P index values computed by the Arkansas and RUSLE models exhibited low correlation (r2 < 0.32) with the measured soluble reactive (SRP) and total P (TP), while the RCN model result correlations were somewhat higher (r2 = 0.53 for SRP and 0.45 for TP). High correlations between the calculated and measured P during rainfall–runoff events were only achieved with the Hermon model (r2 = 0.77 to 0.9). These high coefficients resulted from avoiding subjective categorization of the continuous variables and using the measured site-specific erosional predictors instead. On one occasion, during the first significant runoff event of the year, the Hermon model failed to predict total P in the stream water (r2 = 0.14) because of considerable resuspension of stream sediments. Most of the P-index models are based on the perceptual transfer-continuum framework that was developed for temperate agro-catchments; this framework does not consider P resuspension along streams during rainfall–runoff events. Hence, a new set of equations should be added to the P index to account for potential resuspension in Eastern Mediterranean streams at the beginning of the hydrological year