12 research outputs found

    Morpho-physiological and molecular evaluation of drought tolerance in cassava (Manihot esculenta Crantz)

    No full text
    Understanding drought tolerance mechanisms of cassava is a pre-requisite to improve the performance of the crop in water-scarce regions. Several hypotheses have been formulated to suggest how cassava can withstand a prolonged period of drought. We performed field trials under drought conditions with a selection of 37 cassava genotypes to identify phenotypic and molecular patterns associated with drought tolerance. Plant morphologies varied significantly between cassava genotypes under drought conditions in Kenya, which indicates a strong genetic basis for phenotypic differences. Drought stress reduced yield by 59%, the number of edible storage roots by 43% and leaf retention by 50% on average. Over three years and in two experimental field sites, the most drought tolerant genotype bulked 7.1 (±2.1) t/ha yield while the most drought susceptible genotype yielded 3.3 (±1.4) t/ha under drought conditions. The significant positive correlation of yield under irrigated and non-irrigated conditions suggests that selection of genotypes with high yield performance under well-watered or control conditions should be prioritized to identify genotypes with superior performance under drought stress. The positive correlation between yield and leaf retention provided further evidence that leaf longevity positively contributes to yield in water-deficit conditions. Yield differences could be attributed in part to variation in stomatal conductance (gs) because selected drought tolerant genotypes maintained higher gs and delayed stomatal closure as compared to drought susceptible genotypes. Further analysis revealed that genetic or molecular differences for gs between drought tolerant and susceptible genotypes could be detected at early stages of water deficit. These differences likely involve both abscisic acid (ABA)-dependent and ABA-independent molecular pathways.ISSN:0378-4290ISSN:1872-685

    Survey of Fungal Foliar and Panicle Diseases in Smallholder Sorghum Cropping Systems in Different Agro-Ecologies of Lower Eastern Kenya

    No full text
    Sorghum is a staple food crop and plays a critical role in subsistence farming in Kenya due to its adaptability to marginal agro-ecological zones. However, fungal diseases are among the major biotic constraints of sorghum production, causing over 70% yield loss in susceptible cultivars. Information on the distribution and severity of fungal diseases is important to establish efficient and improved strategies for integrated disease management of sorghum fungal diseases. The aim of this study was to determine the prevalence, incidence, severity and spatial distribution of fungal diseases on sorghum across agro-ecological zones of lower eastern Kenya. A total of 384 smallholder farmers’ fields were surveyed, and in each field, 30 plants were assessed for prevalence and incidence of fungal diseases using a W-shaped pattern to cover the whole field. Sorghum anthracnose was the most prevalent disease (71%), followed by leaf blight (70.18%), rust (68.41%), smut (63.02%), sorghum mildew (55.33%), Alternaria leaf spot (48.39%) and rough leaf spot (46.02%). Disease prevalence, incidence and severity varied among the investigated agro-ecological zones. There was a significant difference (p ≤ 0.05) in fungal disease severity across the investigated agro-ecological zones. Spatially interpolated disease maps showed a high variation in the distribution of various sorghum fungal diseases across the investigated agro-ecological zones of lower eastern Kenya. Morpho-cultural identification revealed the association of Colletotrichum sublineola with anthracnose, Curvularia lunata and Bipolaris cynodontis with leaf blight, Puccinia purpurea with rust, Peronosclerospora sorghi with downy mildew, Alternaria alternata with Alternaria leaf spot, Ascochyta sorghi with rough leaf spot and Sporisorium sorghi with covered kernel smut symptoms. Information obtained in this study will be useful to update knowledge on sorghum fungal diseases and provide a basis for the development of strategies for management and control of the investigated diseases

    Survey of Fungal Foliar and Panicle Diseases in Smallholder Sorghum Cropping Systems in Different Agro-Ecologies of Lower Eastern Kenya

    No full text
    Sorghum is a staple food crop and plays a critical role in subsistence farming in Kenya due to its adaptability to marginal agro-ecological zones. However, fungal diseases are among the major biotic constraints of sorghum production, causing over 70% yield loss in susceptible cultivars. Information on the distribution and severity of fungal diseases is important to establish efficient and improved strategies for integrated disease management of sorghum fungal diseases. The aim of this study was to determine the prevalence, incidence, severity and spatial distribution of fungal diseases on sorghum across agro-ecological zones of lower eastern Kenya. A total of 384 smallholder farmers’ fields were surveyed, and in each field, 30 plants were assessed for prevalence and incidence of fungal diseases using a W-shaped pattern to cover the whole field. Sorghum anthracnose was the most prevalent disease (71%), followed by leaf blight (70.18%), rust (68.41%), smut (63.02%), sorghum mildew (55.33%), Alternaria leaf spot (48.39%) and rough leaf spot (46.02%). Disease prevalence, incidence and severity varied among the investigated agro-ecological zones. There was a significant difference (p ≤ 0.05) in fungal disease severity across the investigated agro-ecological zones. Spatially interpolated disease maps showed a high variation in the distribution of various sorghum fungal diseases across the investigated agro-ecological zones of lower eastern Kenya. Morpho-cultural identification revealed the association of Colletotrichum sublineola with anthracnose, Curvularia lunata and Bipolaris cynodontis with leaf blight, Puccinia purpurea with rust, Peronosclerospora sorghi with downy mildew, Alternaria alternata with Alternaria leaf spot, Ascochyta sorghi with rough leaf spot and Sporisorium sorghi with covered kernel smut symptoms. Information obtained in this study will be useful to update knowledge on sorghum fungal diseases and provide a basis for the development of strategies for management and control of the investigated diseases

    Identification and Characterization of <i>Colletotrichum</i> Species Causing Sorghum Anthracnose in Kenya and Screening of Sorghum Germplasm for Resistance to Anthracnose

    No full text
    Anthracnose caused by Colletotrichum species is one of the most destructive fungal diseases of sorghum with annual yield losses of up to 100%. Although the resistance to anthracnose has been identified elsewhere, the usefulness of the resistance loci differs depending on the pathogen species and pathotypes. Accurate species identification of the disease-causing fungal pathogens is essential for developing and implementing suitable management strategies. The use of host resistance is the most effective strategy of anthracnose management and therefore identification of sources for resistance against unique pathogen pathotypes is fundamental. The aims of this study were to identify and characterize Colletotrichum species associated with sorghum anthracnose and screen sorghum germplasm for resistance to anthracnose. Symptomatic sorghum leaf samples were collected from smallholder farmers in lower eastern Kenya and used for the isolation, identification and characterization of Colletotrichum species using morpho-cultural and phylogenetic analyses with the sequences of the rDNA internal transcribed spacer (ITS) region. Pathogenicity tests of the seven fungal isolates showed that there were no significant differences in the pathogenicity on host plants. The fungal isolates were variable in cultural and morphological characters such as colony type and color, colony diameter, mycelia growth and hyaline. The phenotypic characters observed were useful in the identification of the genus Colletotrichum and not the species. Based on the sequence and phylogenetic analysis of ITS, Colletotrichum sublineola was revealed to be associated with anthracnose on sorghum. Germplasm screening for resistance to anthracnose showed differential reactions of sorghum genotypes to anthracnose under greenhouse and field conditions. The results revealed four resistant genotypes and ten susceptible genotypes against Colletotrichum sublineola. Significant (p ≤ 0.05) differences were observed in grain weight, grain yield, weight of 100 seeds and harvest index among the tested sorghum genotypes. The present study indicated that the Kenyan accessions could be an important source of resistance to anthracnose. The findings from this study provide a platform towards devising efficient disease control strategies and resistance breeding

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community
    corecore