1,931 research outputs found
PCA-RECT: An Energy-efficient Object Detection Approach for Event Cameras
We present the first purely event-based, energy-efficient approach for object
detection and categorization using an event camera. Compared to traditional
frame-based cameras, choosing event cameras results in high temporal resolution
(order of microseconds), low power consumption (few hundred mW) and wide
dynamic range (120 dB) as attractive properties. However, event-based object
recognition systems are far behind their frame-based counterparts in terms of
accuracy. To this end, this paper presents an event-based feature extraction
method devised by accumulating local activity across the image frame and then
applying principal component analysis (PCA) to the normalized neighborhood
region. Subsequently, we propose a backtracking-free k-d tree mechanism for
efficient feature matching by taking advantage of the low-dimensionality of the
feature representation. Additionally, the proposed k-d tree mechanism allows
for feature selection to obtain a lower-dimensional dictionary representation
when hardware resources are limited to implement dimensionality reduction.
Consequently, the proposed system can be realized on a field-programmable gate
array (FPGA) device leading to high performance over resource ratio. The
proposed system is tested on real-world event-based datasets for object
categorization, showing superior classification performance and relevance to
state-of-the-art algorithms. Additionally, we verified the object detection
method and real-time FPGA performance in lab settings under non-controlled
illumination conditions with limited training data and ground truth
annotations.Comment: Accepted in ACCV 2018 Workshops, to appea
Effect systems revisited—control-flow algebra and semantics
Effect systems were originally conceived as an inference-based program analysis to capture program behaviour—as a set of (representations of) effects. Two orthogonal developments have since happened. First, motivated by static analysis, effects were generalised to values in an algebra, to better model control flow (e.g. for may/must analyses and concurrency). Second, motivated by semantic questions, the syntactic notion of set- (or semilattice-) based effect system was linked to the semantic notion of monads and more recently to graded monads which give a more precise semantic account of effects.
We give a lightweight tutorial explanation of the concepts involved in these two threads and then unify them via the notion of an effect-directed semantics for a control-flow algebra of effects. For the case of effectful programming with sequencing, alternation and parallelism—illustrated with music—we identify a form of graded joinads as the appropriate structure for unifying effect analysis and semantics
Spherical coding algorithm for wavelet image compression
PubMed ID: 19342336In recent literature, there exist many high-performance wavelet coders that use different spatially adaptive coding techniques in order to exploit the spatial energy compaction property of the wavelet transform. Two crucial issues in adaptive methods are the level of flexibility and the coding efficiency achieved while modeling different image regions and allocating bitrate within the wavelet subbands. In this paper, we introduce the "spherical coder," which provides a new adaptive framework for handling these issues in a simple and effective manner. The coder uses local energy as a direct measure to differentiate between parts of the wavelet subband and to decide how to allocate the available bitrate. As local energy becomes available at finer resolutions, i.e., in smaller size windows, the coder automatically updates its decisions about how to spend the bitrate. We use a hierarchical set of variables to specify and code the local energy up to the highest resolution, i.e., the energy of individual wavelet coefficients. The overall scheme is nonredundant, meaning that the subband information is conveyed using this equivalent set of variables without the need for any side parameters. Despite its simplicity, the algorithm produces PSNR results that are competitive with the state-of-art coders in literature.Publisher's VersionAuthor Post Prin
Coeffects: A calculus of context-dependent computation
The notion of context in functional languages no longer refers just to variables in scope. Context can capture additional properties of variables (usage patterns in linear logics; caching requirements in dataflow languages) as well as additional resources or properties of the execution environment (rebindable resources; platform version in a cross-platform application). The recently introduced notion of coeffects captures the latter, whole-context properties, but it failed to capture fine-grained per-variable properties.
We remedy this by developing a generalized coeffect system with annotations indexed by a coeffect shape. By instantiating a concrete shape, our system captures previously studied flat (whole-context) coeffects, but also structural (per-variable) coeffects, making coeffect analyses more useful. We show that the structural system enjoys desirable syntactic properties and we give a categorical semantics using extended notions of indexed comonad.
The examples presented in this paper are based on analysis of established language features (liveness, linear logics, dataflow, dynamic scoping) and we argue that such context-aware properties will also be useful for future development of languages for increasingly heterogeneous and distributed platforms
A Path Integral for the Chiral-Form Partition Function
38 pages; v2: minor correctionsStarting from the recent action proposed by Sen [1,2], we evaluate the partition function of the compact chiral boson on a two-dimensional torus using a path-integral formulation. Crucially, we use a Wick-rotation procedure obtained from a complex deformation of the physical spacetime metric. This directly reproduces the expected result including general characteristics for the theta functions. We also present results for the chiral 2-form potential in six dimensions which can be readily extended to 4k+2 dimensions
BISC: Binary SubComplexes in proteins database
Binary subcomplexes in proteins database (BISC) is a new protein–protein interaction (PPI) database linking up the two communities most active in their characterization: structural biology and functional genomics researchers. The BISC resource offers users (i) a structural perspective and related information about binary subcomplexes (i.e. physical direct interactions between proteins) that are either structurally characterized or modellable entries in the main functional genomics PPI databases BioGRID, IntAct and HPRD; (ii) selected web services to further investigate the validity of postulated PPI by inspection of their hypothetical modelled interfaces. Among other uses we envision that this resource can help identify possible false positive PPI in current database records. BISC is freely available at http://bisc.cse.ucsc.edu
Akt links insulin signaling to albumin endocytosis in proximal tubule epithelial cells
Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage. Copyright
Type A behavior and risk of all-cause mortality, CAD, and CAD-related mortality, in a type 1 diabetes population: 22 years of follow-up in the Pittsburgh Epidemiology of Diabetes Complications Study
Objective To determine whether type A behavior predicts all cause mortality and incident coronary artery disease (CAD) in a type 1 diabetes population.
Research Design and Methods Twenty-two year follow-up data from the Pittsburgh Epidemiology of Diabetes Complications (EDC) study of childhood onset type 1 diabetes were analyzed for the 506 participants who completed the Bortner Rating Scale (measuring type A myocardial infarction as determined by hospital records/ Q waves on ECG, CAD death behavior) and Beck’s Depression Inventory (BDI) at baseline (1986-1988). CAD comprised (determined by a mortality classification committee), angiographic stenosis, ischemic ECG and angina.
Results There were 128 deaths (25.3%) during follow-up. Univariate analysis showed an inverse relationship between Bortner scores and all cause mortality (p=0.01) which remained significant after allowing for age, sex, duration, HbA1c, education, smoking, BMI, and physical activity (p=0.03). However, the addition of BDI scores attenuated the relationship (p=0.11) with a significant interaction (p=0.03) such that any protective effect against mortality was limited among individuals with lower BDI scores (bottom 3 quintiles) (p=0.07), while no effect was seen in those with higher BDI (p=0.97). Bortner scores showed only a borderline association with incident CAD (p=0.09).
Conclusions Those with higher type A behavior have lower all-cause mortality in our type 1 diabetes population, an effect that interacts with depressive symptomatology such that it is only operative in those with low BDI scores. Further research should focus on understanding this interaction
- …