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Abstract
The notion of context in functional languages no longer refers just
to variables in scope. Context can capture additional properties of
variables (usage patterns in linear logics; caching requirements in
dataflow languages) as well as additional resources or properties of
the execution environment (rebindable resources; platform version
in a cross-platform application). The recently introduced notion of
coeffects captures the latter, whole-context properties, but it failed
to capture fine-grained per-variable properties.

We remedy this by developing a generalized coeffect system
with annotations indexed by a coeffect shape. By instantiating a
concrete shape, our system captures previously studied flat (whole-
context) coeffects, but also structural (per-variable) coeffects, mak-
ing coeffect analyses more useful. We show that the structural sys-
tem enjoys desirable syntactic properties and we give a categorical
semantics using extended notions of indexed comonad.

The examples presented in this paper are based on analysis of
established language features (liveness, linear logics, dataflow, dy-
namic scoping) and we argue that such context-aware properties
will also be useful for future development of languages for increas-
ingly heterogeneous and distributed platforms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory

Keywords Context; Types; Coeffects; Indexed comonads

1. Introduction
Context is important for defining meaning – not just in natural lan-
guages, but also in logics and programming languages. The stan-
dard notion of context in programming is an environment provid-
ing values for free variables. An open term with free variables is
context dependent – its meaning depends on the free-variable con-
text. The simply-typed λ-calculus famously analyses such context
usage. Other systems go further. For example, bounded linear logic
tracks the number of times a variable is used [7].

In software engineering, “context” often encompasses more
than just free-variable values. For example, in a distributed system,
the context provides resources that may be available on a particular
device (e.g., a database on a server or a GPS sensor on a phone).

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper, we develop a calculus for capturing various no-
tions of context in programming. A key feature and contribution of
the calculus is its coeffect system which provides a static analysis
for contextual properties (coeffects). The system follows the style
of type and effect systems, but captures a different class of proper-
ties. Another key contribution of the calculus is its semantics which
can be smoothly instantiated for specific notions of context.

Coeffect systems were previously introduced as a generic anal-
ysis of context dependence which can be instantiated for various
notions of context [15]. The formalization was restricted to track-
ing a class of whole-context properties where terms have just one
coeffect. This limited the applications and precision of any analy-
sis. For example, a whole-context liveness analysis marks the entire
free-variable context as live (some variable may be used) or dead
(no variable is used), but it cannot record liveness per variable.

We develop a more general system which captures both per-
variable coeffects, which we call structural, and whole-context
coeffects, which we call flat, and more. Our key contributions are:
• We present the coeffect calculus which augments the simply-

typed λ-calculus with a general coeffect type system (Sec-
tion 3). We demonstrate the two classes of flat (whole context)
and structural (fine-grained, per variable) systems.
• We show practical examples, instantiating the calculus for

structural systems capturing variable usage based on bounded
linear logic, dataflow caching, and precise liveness analysis.
We also instantiate the calculus to flat systems, building on and
extending previous examples from [15].
• We discuss the syntactic properties of flat and structural vari-

ants of the coeffect calculus (Section 4). Notably, structural
systems satisfy type preservation under both β-reduction and
η-expansion, allowing their use with both call-by-name and
call-by-value languages. This important property distinguishes
structural coeffects from both effect systems and flat coeffects.
• We provide a denotational semantics, revisiting and extending

the notion of indexed comonads to the structural setting (Sec-
tion 5). We prove soundness by showing the correspondence
between syntactic and semantic properties of coeffect systems.

Coeffects can be approached from multiple directions (Section 2.5)
including syntactic (effect systems), semantic, and proof-theoretic.
We emphasize the syntactic view, though we also outline a categor-
ical semantics and note the interesting technical details.

2. Why coeffects matter
Coeffects are a way to describe notions of context that keep turning
up in programming. To illustrate this, we overview three systems
tracking contextual properties that motivate our general coeffect
system. Two systems track per-variable properties (bounded linear
logic and dataflow) and one tracks whole-context properties (im-
plicit parameters). We start with some background and finish with
a brief overview of the literature leading to coeffects.
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2.1 Background, scalars and vectors
The λ-calculus is asymmetric – it maps a context with multiple
variables to a single result. An expression with n free variables of
types τi can be modelled by a function τ1 × . . . × τn → τ with a
product on the left, but a single value on the right. Effect systems
attach effect annotations to the result τ . In coeffect systems, we
attach coeffects to the context τ1 × . . .× τn and we often (but not
always) have one coeffect per variable. We call the overall coeffect
a vector consisting of scalar coeffects. This asymmetry explains
why coeffect systems are not trivially dual to effect systems.

It is useful to clarify how vectors are used in this paper. Suppose
we have a set C of scalars. A vectorR over C is a tuple 〈r1, . . . , rn〉
of scalars. We use letters like R,S, T for vectors and r, s, t for
scalars.1 We also say that the shape of a vector [R] (or more
generally any container) is the set of positions in a vector. So, a
vector of length n has shape {1, 2, . . . , n}.

Just as in scalar-vector multiplication, we lift any binary opera-
tion • on scalars into a scalar-vector one: s•R = 〈s•r1, . . . , s•rn〉.
Given two vectors R,S of the same shape, containing partially or-
dered scalars, we write R ≤ S for the pointwise extension of ≤ on
scalars. Finally, the associative operation × concatenates vectors.

We note that an environment Γ containing n uniquely named,
typed variables is also a vector, but we continue to write ‘,’ for the
product, so Γ1, x :τ,Γ2 should be seen as Γ1 × 〈x :τ〉 × Γ2.

2.2 Bounded reuse
Bounded linear logic provides a modality that limits the number
of times a proposition (variable) can be reused [7]. A type system
corresponding to this logic can be used, for example, to restrict
well-typed terms to polynomial-time algorithms. A proposition !kA
means that A can be used at most k times. For uniformity with
later notation, we write propositions A as τ . Our work attaches a
vector of annotations to sets of assumptions, using the @ operator,
i.e., τ1, ..., τn@〈k1, ..., kn〉, rather than writing bounds for each
assumption as in !k1A1, ..., !knAn.

Bounded linear logic includes explicit weakening and contrac-
tion rules that affect the multiplicity. Following the original logical
style (but with our notation), these are written as:

(weak)
Γ@R ` τ

Γ, τ0@R×〈0〉 ` τ (contr)
Γ1, τ0, τ0,Γ2@R×〈s, t〉×Q ` τ
Γ1, τ0,Γ2@R×〈s+ t〉×Q ` τ

The context Γ@R includes a coeffect annotation R which is a vec-
tor 〈r1, . . . , rn〉 of the same length as Γ (a side-condition omitted
for brevity). In weakening, unused propositions are annotated with
0 (no uses), while in contraction, multiple occurrences of a propo-
sition are joined by adding the number of uses.

Bounded linear coeffects. The system in Figure 1 fleshes out the
idea into a simple calculus. Variable access (var) has a singleton
context with a singleton coeffect vector 〈1〉. Weakening (weak)
extends the free-variable context with an unused variable and the
coeffect with an associated scalar 0. Explicit contraction (contr)
and exchange (exch) rules manipulate variables in the context and
modify the annotations accordingly – adding the number of uses in
contraction and switching vector elements in exchange.

For abstraction (abs), we know the number of uses of the pa-
rameter variable x and attach it to the function type τ1

s−→ τ2 as a
latent coeffect. The remaining variables in Γ are annotated with the
remaining coeffect vector R, specifying immediate coeffects.

Application (app) describes call-by-name evaluation. Applying
a function that uses its parameter t-times to an argument that uses
variables in Γ2 S-times means that, in total, the variables in Γ2 will

1 For better readability, the paper distinguishes different structures using
colours. However ignoring the colour does not introduce any ambiguity.

(var)
x :τ@〈1〉 ` x : τ

(weak)
Γ@R ` e : τ

Γ, x :τ0@R×〈0〉 ` e : τ

(sub)
Γ@R ` e : τ

Γ@R′ ` e : τ
(R ≤ R′) (abs)

Γ, x :τ1@R×〈s〉 ` e : τ2

Γ@R ` λx.e : τ1
s−→ τ2

(app)
Γ1@R ` e1 : τ1

t−→ τ1 Γ2@S ` e2 : τ2
Γ1,Γ2@R×(t ∗ S) ` e1 e2 : τ2

(contr)
Γ1, y :τ0, z :τ0,Γ2@R×〈s, t〉×Q ` e : τ

Γ1, x :τ0,Γ2@R×〈s+ t〉×Q ` e[z, y � x] : τ

(exch)
Γ1, x :τ1, y :τ2,Γ2@R×〈s, t〉×Q ` e : τ

Γ1, y :τ2, x :τ1,Γ2@R×〈t, s〉×Q ` e : τ

Figure 1: Bounded reuse: Type & coeffect system in the λ-calculus

be used (t∗S)-times. Recall that t∗S is a scalar multiplication of a
vector. Meanwhile, the variables in Γ1 are used just R-times when
reducing the expression e1 to a function value.

Finally, the sub-coeffecting rule (sub) safely overapproximates
the number of uses by the pointwise ≤ relation. We can view any
variable as being used a greater number of times than it actually is.

Example. To demonstrate, consider a term (λv.x+v+v) (x+y).
According to the call-by-name intuition, the variable x is used three
times – once directly inside the function and twice via the variable v
after substitution. Similarly, y is used twice. Eliding the derivation
of the function body’s coeffect, abstraction yields:

(abs)
x :Z, v : Z@〈1, 2〉 ` x+ v + v : Z

x :Z@〈1〉 ` (λv.x+ v + v) : Z 2−→ Z

To avoid name clashes, we α-rename x to x′ and later join x and x′

using contraction. Assuming (x′ + y) is checked in a context that
marks x′ and y as used once, the application rule yields a judgment
that is simplified as follows:

x :Z, x′ :Z, y :Z@〈1〉×(2 ∗ 〈1, 1〉) ` (λv.x+ v + v) (x′+ y) : Z

(contr)
x :Z, x′ :Z, y :Z@〈1, 2, 2〉 ` (λv.x+ v + v) (x′+ y) : Z

x :Z, y :Z@〈3, 2〉 ` (λv.x+ v + v) (x+ y) : Z
The first step performs scalar multiplication, producing the vector
〈1, 2, 2〉. In the second step, we use contraction to join variables x
and x′ from the function and argument terms respectively.

It is worth pointing out that reduction by substitution yields
x+(x+y)+(x+y) which has the same coeffect as the original. We
return to evaluation strategies in Section 4, and show that structural
coeffect systems preserve types and coeffects under β-reduction.

2.3 Dataflow and data access
Dataflow languages, such as Lucid, describe computations over
streams [20]. An expression is re-evaluated when new inputs are
available (push) or when more output is demanded (pull). In causal
dataflow, programs can access past values of a stream. We consider
a language where prev e returns the previous value of e. In the
language, prev (prev e) returns the second past value and so on.

An implementation of causal dataflow may cache past values of
variables as an optimisation. The question is, how many past values
should be cached? This can be approximated by a coeffect system.

Dataflow coeffects. The coeffect system for dataflow is similar to
the one for bounded reuse, tracking a vector of natural numbers R
as part of the context Γ@R. Here, coeffects represent the maximal
number of past values (causality depth) required for a variable.
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(contr)
Γ1, y :τ, z :τ,Γ2@R×〈s, t〉×Q ` e : τ

Γ1, x :τ,Γ2@R×〈max(s, t)〉×Q ` e[y, z � x] : τ

(app)
Γ1@R ` e1 : τ1

t−→ τ2 Γ2@S ` e2 : τ1
Γ1,Γ2@R×(t+ S) ` e1 e2 : τ2

(var)
x :τ@〈0〉 ` x : τ

(prev) Γ@R ` e : τ
Γ@1 +R ` prev e : τ

Figure 2: Type and coeffect system for dataflow caching

Weakening, exchange, abstraction and sub-coeffecting are the
same as in bounded linear coeffects, but the remaining rules differ.
In Figure 2, accessed variables (var) are annotated with 0 meaning
that no past value is required (only the current one). The (prev) rule
crates caching requirements – it increments the number of required
values for all variables used in e using scalar-vector addition.

Application and contraction have the same structure as before,
but use different operators. If two variables are contracted, requir-
ing s and t past values, then at most max(s, t) past values are
needed (contr). That is, two caches are combined with the maxi-
mum of the two requirements, which satisfy the smaller require-
ments. In (app), the function requires t past values of its parameter.
This means t past values of e2 are needed which in turn requires S
past values of its free variables Γ2. Thus, we need t+S past values
of Γ2 to perform the call (e.g., we need 1 + S values to get 1 past
value of the input τ1, 2 + S values to get 2 past values of τ1, etc.).

Example. As an example, consider a function λx.prev (y + x)
applied to an argument prev (prev y). The body of the function
accesses the past value of two variables, one free and one bound:

(abs)
y :Z, x :Z@〈1, 1〉 ` prev (y + x) : Z
y :Z@〈1〉 ` λx.prev (y + x) : Z 1−→ Z

The expression always requires the previous value of y and adds it
to a previous value of the parameter x. Evaluating the value of the
argument prev (prev y) requires two past values of y and so the
overall requirement is 3 past values:

y :Z@〈1〉 ` λx. . . . y′ :Z@〈2〉 ` (prev (prev y′)) : Z(app)
y :Z, y′ :Z@〈1, 3〉̀ (λx.prev (y + x)) (prev (prev y′)) :Z(contr)
y :Z@〈3〉 ` (λx.prev (y + x)) (prev (prev y)) : Z

The derivation uses (app) to get requirements 〈1, 3〉 and then
(contr) to take the maximum, showing three past values are suffi-
cient. Reducing the expression by substitution we get prev (y +
(prev (prev y))). Semantically, this performs stream lookups
y[1] + y[3] where the indices are the number of enclosing prevs.

We previously used dataflow as an example of coeffects [15],
but tracked caching requirements on the whole context. The system
outlined here is more powerful and practically useful, with finer-
grained coeffects tracking per-variable caching requirements.

2.4 Implicit parameters
As our third example, we revisit Haskell implicit parameters [9]
used in our earlier coeffect work [15]. Implicit parameters are
variables that mix aspects of dynamic and lexical scoping. Implicit
parameters are a distinct syntactic category to variables and we
write them as ?p. For simplicity, we omit let-binding for implicit
parameters and focus just on tracking requirements.

Implicit parameters coeffects. Implicit parameters are a whole-
context coeffect not linked to ordinary variables. We keep track
of sets of implicit parameters that are required by an expression
(and their types). For example Γ@{?p1 : τ1, . . . , ?pn : τn} means

(exch)
Γ1, x :τ1, y : τ2,Γ2@r ∪ s ∪ t ∪ q ` e : τ

Γ1, y :τ2, x : τ1,Γ2@r ∪ t ∪ s ∪ q ` e : τ

(app)
Γ1@r ` e1 : τ1

t−→ τ1 Γ2@s ` e2 : τ2
Γ1,Γ2@r ∪ t ∪ s ` e1 e2 : τ2

(param)
()@{?p : τ} ` ?p : τ

(abs)
Γ, x :τ1@r ∪ s ` e : τ2

Γ@r ` λx.e : τ1
s−→ τ2

Figure 3: Type and coeffect system for implicit parameters

that a context provides ordinary variables Γ and values for implicit
parameters ?pi. Unlike in the previous examples, we no longer need
to distinguish between coeffects attached to variables (scalars) and
coeffects attached to contexts (vectors), so we write r, s, t for both.

Despite the differences, the type system in Figure 3 follows the
same structure as the earlier two examples. Context requirements
are created when accessing an implicit parameter, in a system-
specific rule (param). Structural rules (exchange, weaken, contract)
do not affect the coeffects. For example, parameters are reordered
in (exch), but this has no effect as set union ∪ is commutative.

In abstraction and application, the structural×operator (previ-
ously vector concatenation) becomes ∪. Sets of implicit parameters
are not associated to individual variables and so they are unioned.
The (app) rule uses ∪ to combine the implicit parameters required
by the function with the requirements of the argument too.

We call this a flat coeffect system since coeffects have only
one shape (there is no scalar/vector distinction). Other flat coeffect
systems may use a richer structure [15]. In particular, the operations
used in abstraction and application may differ (to accommodate
over-approximation). We return to this in Section 3.5.

Example. Unlike structural (per-variable) coeffect systems, flat
(whole-context) systems do not necessarily have principal coef-
fects. This arises from the (abs) rule which can freely split require-
ments between the function type and the declaring context. Con-
sider a function λ().?p1 + ?p2. There are nine possible type and
coeffect derivations, two of which are:

∅@{} ` λ().?p1 + ?p2 : unit
{?p1:Z,?p2:Z}−−−−−−−−→ Z

∅@{?p1 : Z} ` λ().?p1 + ?p2 : unit
{?p2:Z}−−−−−→ Z

In the first case, both parameters are dynamically scoped and have
to be provided by the caller. In the second case, the parameter ?p1

is available in the declaring scope and so it is (lexically) captured.
Although structural coeffects have more desirable syntactic

properties, we aim to capture this non-principality too as it is prac-
tically useful – not only in Haskell’s implicit parameters, but also
in resource rebinding in distributed systems such as Acute [17].

2.5 Pathways to coeffects
This paper largely follows work on effect systems and their link to
categorical semantics. We briefly review this and other directions
leading to coeffects. An eager reader can return to this section later.

Effect systems. Effect systems [6] track effectful operations of
computations such as memory access or lock usage [4]. They are
written as judgments Γ ` e : τ & ρ associating effects ρ with
the result. Effect systems capture output effects where, as Tate
puts it, “all computations with [an] effect can be thunked as pure
computations for a domain-specific notion of purity.” [18]. This
thunking is typically a λ-abstraction. Given an effectful expression
e, the function λx.e is an effect-free value that delays all effects:

(abs)
Γ, x :τ1 ` e : τ2 & ρ

Γ ` λx.e : τ1
ρ−→ τ2 & ∅
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Coeffects do not follow this pattern. In contrast to effect systems,
context requirements cannot be easily “thunked” as pure values.
Lambda abstraction can split context requirements between imme-
diate and latent requirements. This is akin to how lambda abstrac-
tion splits a free-variable context into the bound parameter (call
site) and the remaining free variables (declaration site).

Categorical semantics. Moggi models effectful computations as
functions of type τ1 →Mτ2 where M is a monad providing com-
position of effectful computations [10]. Wadler and Thiemann link
effect systems to monads via annotated monads τ1 → Mρτ2 [21],
whose semantics has been provided by Katsumata [8].

Context-dependent computations require a different model.
Uustalu and Vene use functions Cτ1 → τ2 where C is a comonad
[19]. Our earlier work [15] used indexed comonads with denota-
tionsCrτ1 → τ2 adding annotations akin to Wadler and Thiemann.
In Section 5 we extend indexed comonads to capture the general
coeffect systems of this paper, in the style of Katsumata.

Language and meta-language. Moggi uses monads in two sys-
tems [10]. In the first system, a monad is used to model an effectful
language itself – the semantics of a language uses a specific monad.
In the second system, monads are added as type constructors, to-
gether with syntax corresponding to unit and bind operations.

For context dependence, Uustalu and Vene follow the first ap-
proach using comonads for their semantics [19]. Contextual-Modal
Type Theory (CMTT) of Nanevski et al. [11] follows the latter ap-
proach, adding a comonad to the language via the � modality of
modal S4. We focus on concrete languages using the first approach.
A “coeffect meta-language” is an interesting future work.

Sub-structural systems Sub-structural type systems restrict how
a context is used. This is achieved by removing some of the
structural typing rules (weakening, contraction, exchange). As the
bounded linear logic example (Section 2.2) shows, our system can
be viewed as a generalization of sub-structural type systems.

3. The coeffect calculus
The three calculi shown in the previous section track two kinds
of contextual properties: bounded reuse and dataflow are structural
(per-variable) systems, and implicit parameters and our earlier co-
effect systems [15] are flat (whole-context) systems. This section
presents our primary contribution: the general coeffect calculus.

The calculus is parameterised by an algebraic structure of coef-
fects. To capture both structural and flat systems, coeffect annota-
tions are indexed by a shape. In flat systems, the shape is a singleton
set {∗} and so annotations are scalar values. Structural systems use
shapes matching the number of variables in a free-variable context
{1, . . . , n} and so annotations are vectors. However, the coeffect
calculus could also use shapes describing trees and other structures.

3.1 Understanding coeffects: syntax and semantics
The coeffect calculus provides both an analysis of context depen-
dence (its coeffect system) and a semantics for context (see Sec-
tion 5). These two features of the calculus provide different per-
spectives on coeffect annotations R in a judgment Γ@R ` e : τ .

• Syntactically, coeffects model contextual requirements and may
be overapproximated, so that more capabilities are required
than necessary at runtime.
• Semantically, coeffects model contextual capabilities and be-

have like containers of capabilities, such that the semantics may
throw away capabilities that will not be needed.

Thus there are two dual ways to understand coeffect annotations.
Each perspective implies an alternate reading of the typing rules.

• As contextual requirements, the rules should be read top-down.
The requirements of multiple sub-terms are merged and the
requirements of a function body are split between immediate
(declaration-site) and latent (call-site) coeffects.
• As contextual capabilities, the rules should be read bottom-up.

The capabilities provided to a larger term are split between sub-
terms; for functions, the capabilities of declaration-site and call-
site are merged and passed to the body.

The reason for this asymmetry follows from the fact that context
appears in a negative position in the model. In Section 5, the
denotation of a judgment Γ@R ` e : τ is a function of the form
DRJΓK → JτK where DRJΓK encodes the contextual capabilities
used to evaluate a term. Similarly a function τ1

s−→ τ2 has a model
of the form DsJτ1K → Jτ2K with additional contextual capabilities
attached to the input.

3.2 Structure of coeffects
We describe the algebraic structure of coeffects in three steps.
First, we define a coeffect scalar structure which defines the basic
building blocks of coeffect information; then we define coeffect
shapes which determines how coeffect scalar values are related to
the free-variable context. Finally, we define the coeffect algebra
which consists of shape-indexed coeffect scalar values.

For example, in bounded reuse the coeffect scalar structure
comprise natural numbers N with + and ∗ operators. The shape
for bounded reuse is the length of the free-variable context and so
the coeffect annotation is a vector of matching length. Finally, the
coeffect algebra specifies how vectors are concatenated and split in
abstraction and application.

In the coeffect system of the calculus, contexts are annotated
with shape-indexed coeffects (e.g., vectors) as in Γ@R ` e : τ .
However, functions take just a single input parameter and so are
annotated with scalar coeffect values as in σ r−→ τ . From now on,
we write σ for the source and τ for the target of function types.

Coeffect scalar. Coeffect scalar structures are equipped with two
operations. In bounded reuse, those were ∗ for sequencing (in func-
tion application) and + for context sharing (in contraction). Addi-
tional structure is needed for variable access and sub-coeffecting.

Definition 1. A coeffect scalar (C,~,⊕, use, ign,≤) comprises a
set C together with elements use, ign ∈ C, relation ≤ and binary
operations ~,⊕ such that (C,~, use) and (C,⊕, ign) are monoids,
(C,≤) is a pre-order, and the following distributivity axioms hold:

(r⊕ s) ~ t = (r~ t) ⊕ (s~ t)

t ~ (r⊕ s) = (t~ r) ⊕ (t~ s)

The operation ~ must form a monoid with use to guarantee an un-
derlying category in the semantics (Section 5). It models sequential
composition with variable access (use) as the identity. The other
element (ign) is used for variables that are not accessed. The op-
eration ⊕ combines coeffects for contexts used in multiple places
(contraction). The notation is inspired by the bounded reuse exam-
ple, which uses coeffect scalar structure (N, ∗,+, 1, 0,≤), but be
aware that ~ and ⊕ are not always multiplication and addition.

Coeffect annotations R can be viewed as containers of scalar
coeffects. For structural coeffects, the container is a vector, while
for flat coeffects it is a trivial singleton container. The following
definition takes inspiration from the work of Abbott et al. [1] which
describes containers in terms of shapes and a set of positions.

Coeffect shapes. The coeffect system is parameterised by a set
of shapes S. A coeffect annotation is indexed by a shape s ∈ S
calculated from the shape of the free-variable context Γ. The cor-
respondence is not necessarily bijective. For example, flat coeffect
systems have just a single shape S = {?}.
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Thus, in the judgment Γ@R ` e : τ , the coeffect annotation R
is drawn from the set of coeffect scalars C indexed by the shape of
Γ. We write s = [Γ] for the shape corresponding to Γ. We define
shapes by a set of positions and so we can define R ∈ s → C as a
mapping from positions (defined by the shape) to scalar coeffects.
We usually write this as the exponent R ∈ Cs.

The set of shapes is equipped with an operation that combines
shapes (when we combine variable contexts), an operation that
computes shape from the free-variable contexts, and two special
shapes in S representing empty context and singleton context.

Definition 2. A coeffect shape structure (S, [–], �, 0̂, 1̂) comprises
a set S with a binary operation � on S for shape composition, a
mapping from contexts to shapes [Γ] ∈ S, and elements 0̂, 1̂ ∈ S
such that (S, �, 0̂) is a monoid and [–] is partially specified on
empty and singleton free-variable contexts by:

[∅] = 0̂ [v : τ ] = 1̂

This means that the elements 0̂ and 1̂ represent the shapes of empty
and singleton free-variable contexts respectively. As said earlier,
we use two kinds of shape structure:

• Structural coeffect shape is defined as (N, |–|,+, 0, 1). We treat
numbers as sets 0 = {}, 1 = {∅}, 2 = {∅, 1}, 3 = {∅, 1, 2} . . .
(so that a number is a set of positions). The shape mapping
|Γ| returns the number of variables in Γ. Empty and singleton
contexts are annotated with 0 and 1, respectively, and shapes of
combined contexts are added so that |Γ1,Γ2| = |Γ1| + |Γ2|.
Therefore, a coeffect annotation is a vector R ∈ Cn and assigns
a coeffect scalar R(i) ∈ C for each variable xi in the context.
• Flat coeffect shape is defined as ({?}, star, �, ?, ?) where

star(Γ) = ? and ? � ? = ? where ? = {∅}. That is, there
is a single shape ? with a single position and all free-variable
contexts have the same shape. Therefore, a coeffect annotation
is drawn from C? which is isomorphic to C and so a coeffect
scalar r ∈ C is associated with every free-variable context.

Using a shape with no positions reduces our system to the simply-
typed λ-calculus with no context annotations. Trees can also be
used to build a system akin to bunched typing [12].

Coeffect algebra. The coeffect calculus annotates judgments with
shape-indexed, or shaped, coeffects. The coeffect algebra structure
combines a coeffect scalar and coeffect shape structure to define
shaped coeffects and operations for combining these. In Section 2,
shaped coeffects were combined by the tensor × in structural ex-
amples and ∪ in the implicit parameters example. To capture the
examples so far and those described previously [15], we distinguish
two operators for combining shaped coeffects.

Definition 3. Given a coeffect scalar (C,~,⊕, use, ign,≤) and a
coeffect shape (S, [–], �, 0̂, 1̂) a coeffect algebra extends the two
structures with (

n

, n,⊥) where⊥ ∈ C0̂ is a coeffect annotation for
the empty context and

n

, n are families of operations that combine
coeffect annotations indexed by shapes. That is ∀n,m ∈ S:

nm,n,

n

m,n : Cm × Cn → Cm �n

A coeffect algebra induces the following two additional operations:

〈–〉 : C → C1̂ ~m : C × Cm → Cm
〈x〉 = λ1̂.x r ~ S = λs.r ~ (S(s))

〈–〉 lifts a scalar coeffect to a shaped coeffect indexed by the
singleton context shape. The ~m operation is a left multiplication
of a vector by a scalar. As we always use lower-case for scalars and
upper-case for vectors, using the same symbol is not ambiguous.
We also tend to omit the subscript m and write just ~.

Γ@R ` e : τ

(const)
()@⊥ ` c : ι

(var)
(x : τ)@〈use〉 ` x : τ

(abs)
Γ, x : σ@R

n 〈s〉 ` e : τ

Γ@R ` λx.e : σ
s−→ τ

(app)
Γ1@R ` e1 : σ

t−→ τ Γ2@S ` e2 : σ

Γ1,Γ2@R n (t~S) ` e1 e2 : τ

(let)
Γ1@S ` e1 : σ Γ2, x : σ@R

n 〈t〉 ` e2 : τ

Γ1,Γ2@R n (t~S) ` let x = e1 in e2 : τ

(ctx)
Γ@R ` e : τ Γ′@R′  Γ@R, θ

Γ′@R′ ` θe : τ

Γ′@R′  Γ@R, θ

(weak) Γ, x : τ@R n 〈ign〉 Γ@R, ∅

(exch)
Γ1, y : σ, x : τ,Γ2@R n 〈t〉 n 〈s〉 n Q 

Γ1, x : τ, y : σ,Γ2@R

n 〈s〉 n 〈t〉 n Q, ∅

(contr)
Γ1, x : τ,Γ2@R n 〈s⊕ t〉 n Q 

Γ1, y : τ, z : τ,Γ2@R

n 〈s〉 n 〈t〉 n Q, [y, z 7→ x]

(sub)
Γ1, x : τ,Γ2@R n 〈s′〉 n T  

Γ1, x : τ,Γ2@R

n 〈s〉 n T , ∅ (s ≤ s′)

Figure 4: The general coeffect calculus

The operators n and

n

combine shaped coeffects associated
with two contexts. For example, assume we have Γ1 and Γ2 with
coeffectsR ∈ Cm and S ∈ Cn. In the structural system, the context
shapes m,n denote the number of variables in the two contexts.
The combined context Γ1,Γ2 has a shape m �n and the combined
coeffects R

n

S,R n S ∈ Cm�n are indexed by that shape.
For structural coeffect systems such as bounded reuse, both n

and

n

are just the tensor product × of vectors. However, we need
to distinguish them for flat coeffect systems discussed later.

The difference is explained by the semantics (Section 5), where
R

n

S is an annotation of the codomain of a morphism that merges
the capabilities provided by two contexts (in the syntactic reading,
splits the context requirements); R n S is an annotation of the
domain of a morphism that splits the capabilities of a single context
into two parts (in the syntactic reading, merges their context requi-
rements). Syntactically, this means that we always use

n

in rule
premises and n in conclusions. For now, it suffices to use the
bounded-reuse intuition and read the operations as tensor products.

The distinction between n and

n

provides flexibility to the
calculus. For example, it is possible to instantiate the calculus
such that structural rules are not permitted. In the case of flat and
structural classes of system, different properties of n and

n

permit
free use of structural rules. This is seen in the following sections.

3.3 General coeffect type system
In the previous section, we developed an algebraic structure ca-
pable of capturing different concrete context-dependent properties
discussed in Section 2. Now, we use the structure to define the gen-
eral coeffect calculus in Figure 4.

Coeffect annotations on free-variable contexts are shape-indexed,
where for some shape s ∈ S then R,S, T ∈ Cs. Function types
are annotated with coeffects scalars r, s, t ∈ C. The rules of Fig-
ure 4 manipulate coeffect annotations using the coeffect algebra
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operations (

n

, n,⊥) and the derived constructs 〈–〉 and ~. Free-
variable contexts Γ are treated as vectors modulo duplicate use of
variables – associativity is built-in. Variable order matters, but can
be changed using the structural rules. Structural rules are expressed
using a helper relation, written .

Typing rules. Constants (const) and variables (var) annotate the
context with special values. The empty unused context is annotated
with ⊥ ∈ C0̂ and the singleton context with 〈use〉 ∈ C1̂. Note that
the shapes 0̂, 1̂ match the shape of the variable contexts.

Lambda abstraction splits the context requirements using

n

into
a coeffectR and a coeffect 〈s〉 of a shape 1̂ (semantically, it merges
capabilities provided by the declaration-site and call-site contexts).
In structural systems such as bounded reuse, this identifies coeffect
associated with the bound variable, because

n

is not commutative.
The (app) rule follows the patterns seen earlier – it uses the

scalar-vector multiplication (t~S) of the coeffects S from the ar-
gument (associated with Γ2) and the latent coeffect t of the func-
tion. Using the syntactic reading, it then merges context require-
ments for Γ1 and Γ2. In the dual semantic reading, it splits the
provided context into two parts passed to the sub-expressions.

The typing of let-binding (let) corresponds to the typing of an
expression (λx.e2) e1. Syntactically, the context requirements are
first split using

n

and then re-combined using n .

Structural rules. The coeffect-annotated context can be trans-
formed using structural rules that are not syntax-directed. These are
captured by (ctx), which uses a helper relation representing context
transformations Γ′@R′  Γ@R, θ. The rule models that a context
used in the rule conclusion Γ′@R′ can be transformed to a con-
text required by the premise Γ@R (using the semantic bottom-up
reading). In the rule, θ is a variable substitution generated by the
transformation, which is used in the (contr) rule.

Exchange and contraction decompose and reconstruct coeffect
annotations using

n

m,n (in assumption) and nm,n (in conclusion).
The shape subscripts are omitted, but we require the shapes to
match using m = [Γ1] and n = [Γ2].

The (weak) rule drops an ignored variable annotated with 〈ign〉
(compare with (var) annotated using 〈use〉). The (exch) rule swaps
variables/coeffects while (contr) combines coeffects using ⊕ to
represent sharing of the context. Finally, (sub) represents sub-
coeffecting and can be applied (pointwise) to any scalar coeffect.

3.4 Structural coeffects
The coeffect system uses a general notion of context shape, but it
was designed with structural and flat systems in mind. The struc-
tural system is new in this paper and so we look at it first.

Recall the coeffect shapes that characterise structural systems:
the shape is formed by natural numbers (with addition) modelling
the number of variables in the context. The coeffect algebra is
therefore formed by the free monoid (lists/vectors) over a coeffect
scalar. This means that the system keeps a vector of coeffect scalar
annotations – one for each variable. An empty context (e.g., in the
(const) rule) is annotated with a zero-length vector.

Definition 4. Given a coeffect scalar (C,~,⊕, use, ign,≤) a struc-
tural coeffect system has:

– Coeffect shape (N, |–|,+, 0, 1) formed by natural numbers
– Coeffect algebra (×,×, 〈〉) where × and 〈〉 are shape-indexed

versions of the binary operation and the unit of a free monoid
over C. That is × : Cn × Cm → Cn+m appends vectors (lists)
and 〈〉 : C0 represents empty vectors (lists).

The definition is valid since the shape operations form a monoid
(N,+, 0) and [–] (calculating the length of a list) is a monoid
homomorphism from the free monoid to the monoid of shapes.

Examples. Defining a concrete structural coeffect system is easy,
we just provide the coeffect scalar structure and the rest is free.

• To recreate the system for bounded reuse, we use coeffect
scalars formed by (N, ∗,+, 1, 0,≤). As in the system of Fig-
ure 1, used variables are therefore annotated with 1 and unused
with 0. Contraction adds the number of uses via + and applica-
tion (sequencing) multiplies the uses.
• Dataflow uses natural numbers (of past values), but differently:

(N,+,max, 0, 0,≤). Variables are initially annotated with 0
(and can be incremented using the prev keyword). Annotations
of a shared variable are combined by taking maximum (of past
values needed) and sequencing uses +.
• Another use of the system is to track variable liveness. The

annotations are formed by C = {D, L} where L represents a
live (used) variable and D represents a dead (unused) variable.
The coeffect scalar structure is (C,u,t, L,D,v) where D v L.
In sequential composition (u), a variable is live only if it is
required by both of the computations (L u L = L), otherwise
it is marked as dead (D). A computation is not evaluated if its
result is not needed. A shared variable (t) is live if either of the
uses is live (D t D = D, otherwise L).

Structural liveness is a practically useful, precise version of an ex-
ample from our earlier work, which was a flat system overapprox-
imating liveness of the entire context [15]. Since

n

= n = ×,
structural rules (weaken, contract, exchange) are freely permitted,
modifying the coeffects accordingly.

3.5 Flat coeffects
The same general coeffect system can be used to define systems
that track whole-context coeffects as in the implicit parameters
example (Section 2.4). Flat coeffect systems are characterised by
a singleton set of shapes, such as {?}. In this setting, the context
annotations C? coincide with coeffect scalars C.

In addition to the coeffect scalar structure, we also need to
define n and

n

. Our examples of flat coeffects use ⊕ (merging of
scalar coeffects) for n (merging of shaped coeffect annotations).
However, the

n

operation needs to be provided explicitly. Thus the
general form of flat coeffect system is defined as follows.

Definition 5. Given a coeffect scalar (C,~,⊕, use, ign,≤) and an
operation ∧ : C × C → C such that (r ∧ s)≤ (r⊕ s), we define:

– Flat coeffect shape ({?}, const ?, �, ?, ?) where ? � ? = ?
– Flat coeffect algebra (∧,⊕, ign), i.e., the n = ⊕ and ⊥ = ign

with the additional binary operation

n

= ∧.

The additional axiom (r ∧ s)≤ (r⊕ s) is required for β-equality
in flat systems (see later Theorem 11, Section 4.2).

If

n

is idempotent, then structural rules (weaken, contract, ex-
change) are freely permitted since any flat coeffect annotation r
can be expanded to r

n

r. This property holds for all examples here,
hence structural rules can always be applied.

If n is also idempotent (as in all our examples), then exchange
and contraction rules preserve the coeffects of the assumption in
the conclusion. Otherwise (r ∧ s) ≤ (r⊕ s) means that exchange
and contraction behave as the (sub) rule for subcoeffecting.

Examples. Implicit parameters are the prime example of a flat
coeffect system, but other examples include rebindable resources
[17] and Haskell type classes [13].

In the implicit parameters system (Section 2.4), coeffect scalars
are sets of name-type pairs C = P(Name × Type). Variables are
annotated with ∅ and coeffects are combined or split (in the top-
down reading for (abs)) using set union ∪. Thus, the coeffect scalar
structure is (P(Name× Types),∪,∪, ∅, ∅,⊆) with ∧ = ∪.
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Remark 6. We previously described flat systems for liveness and
dataflow [15]. Turning a structural system to a flat system requires
finding ∧ that underapproximates the capabilities of combined con-
texts. For dataflow, this is given by the min function, which satisfies
the requirement because min(r, s)≤max(r, s).

In flat dataflow, we annotate the entire context with the maximal
number of past elements required overall. We use the same coeffect
scalars (N,+,max, 0, 0,≤) as in the structural version, but with
∧ = min. Abstraction (which is the only rule using ∧) becomes:

(abs)
Γ, x :σ@min(r, s) ` e : τ

Γ@r ` λx.e : σ
s−→ τ

Both the declaration-site and call-site must provide at least the
number of past values required by the body. The overapproximation
means both r and s can be greater than actually required. For
dataflow, we could enforce that immediate and latent coeffects are
identical, but that would require treating

n

as a partial function.

4. Equational theory
Each of the concrete coeffect systems discussed in this paper has a
different notion of context dependence, much like various effectful
languages have different notions of effects (such as state or excep-
tions). However, there are common equational properties that hold
for all (or some) of the systems we consider.

The equational theory in this section illuminates the axioms
of coeffect algebra and the semantics of the calculus. We discuss
syntactic substitution as it can form the basis for reduction in
a concrete operational semantics. We consider structural and flat
systems separately. This provides better insight into how the two
systems work and differ. In particular, call-by-name evaluation is
coeffect preserving for all structural, but only some flat systems.

The properties and proofs in this section are syntactic. In Sec-
tion 5.5 we show that our denotational model of the coeffect calcu-
lus is sound with respect to the equational theory here.

We use standard syntactic substitution written as e1[x � e2],
β-reduction and η-expansion, written as β and η . Equality of
terms e1 and e2, written as ≡ is defined w.r.t their contexts, types
and coeffects and is written Γ@R ` e1 ≡ e2 : τ .

4.1 Structural coeffect systems
For structural coeffect systems, recall that coeffects are vectors with

n =

n

=× (vector concatenation) and ⊥ = 〈〉 (the empty vector),
thus coeffect annotations comprise the free monoid over scalars.
We first show substitution:

Lemma 7 (Substitution lemma). In a structural coeffect calculus
with a coeffect scalar structure (C,~,⊕, use, ign,≤):

Γ@S ` es : σ ∧ Γ1, x : σ,Γ2@R1× 〈r〉× R2 ` er : τ
⇒ Γ1,Γ,Γ2@R1× (r~S)× R2 ` er[x � es] : τ

Proof. By induction over the derivation for er using the free
monoid (C,×, 〈〉) and coeffect scalar axioms (full proof [14]).

Because of the vector (free monoid) structure, coeffects R1, R2,
and 〈r〉 for the receiving term er are uniquely associated with
Γ1, Γ2, and x respectively. Therefore, substituting es (which has
coeffects S) for x introduces the context dependencies specified by
S which are composed with the requirements r on x. Using the
substitution lemma, we can demonstrate β-equality:

Γ1, x : σ@R×〈r〉 ` e1 : τ

Γ1@R ` λx.e1 : σ
r−→ τ Γ2@S ` e2 : σ

Γ1,Γ2@R×(r~S) ` (λx.e1)e2 ≡ e1[x � e2] : τ

As a result, β-reduction preserves the type and coeffects of a term.
This gives the following subject reduction property:

Theorem 8 (Subject reduction). In a structural coeffect calculus,
if Γ@R ` e : τ and e β e

′ then Γ@R ` e′ : τ .

Proof. Following from Lemma 7 and β-equality.

Structural coeffect systems also exhibit η-equality, therefore satis-
fying both the local soundness and local completeness conditions
of Pfenning and Davies [16]. This means that abstraction does not
introduce too much, and application does not eliminate too much.

Γ@R ` e : σ
s−→ τ x : σ@〈use〉 ` x : σ

Γ, x : σ@R × (s~ 〈use〉) ` e x : τ

Γ@R ` λx.e x ≡ e : σ
s−→ τ

The last step uses the equalities s~ 〈use〉 = 〈s~ use〉 = 〈s〉
arising from the monoid (C,~, use) of the scalar coeffect structure.

This highlights another difference between coeffects and ef-
fects, as η-equality does not hold for many notions of effect. For ex-
ample, in a language with output effects, e = (print "hi"; (λx.x))
has different effects to its η-converted form λx.ex because the im-
mediate effects of e are hidden by the purity of λ-abstraction. In
the coeffect calculus, the (abs) rule allows immediate contextual re-
quirements of e to “float outside” of the enclosing λ. Furthermore,
the free monoid nature of×in structural coeffect systems allows the
exact immediate requirements of λx.ex to match those of e.

4.2 Flat coeffect systems
The equational theory for flat coeffect systems is somewhat similar
to effect systems where (co)effects are not linked to individual vari-
ables. In effectful languages, substituting an effectful computation
for y in λx.y changes the latent effect associated with the function.

Similarly, for some of the flat coeffect systems, substituting a
context-dependent computation for y in λx.y adds latent context
requirements to the function type. However, this is not the case
for all flat coeffect systems – for example, call-by-name reduction
preserves types and coeffects for the implicit parameters system
(which makes it a suitable model for Haskell). For other systems,
we first briefly consider call-by-value reduction.

Call-by-value. The notion of value in coeffect systems differs
from the usual syntactic understanding. As discussed earlier, a
function (λx.e) is not necessarily a value in coeffect calculi, be-
cause it may not delay all context requirements of e. Thus a syntac-
tic value v is a value if it has no immediate context requirements.

Definition 9. A syntactic value v is a pure value if Γ@Val ` v : τ
where Val : C[Γ] is a coeffect indexed by the shape of Γ that always
returns use. That is Val = λn.use.

In call-by-value, the right-hand side of an application is evaluated
to a pure value, which is then substituted for a variable. However,
the discharging of coeffects prior to substitution is different for each
coeffect system.

Recall that a flat coeffect system consists of coeffect scalars
(C,~,⊕, use, ign,≤) together with a binary operation ∧ on C such
that the coeffect algebra structure is (∧,⊕, ign).

Lemma 10 (Call-by-value substitution). In a flat coeffect calculus
with coeffect scalars (C,~,⊕, use, ign,≤) and the ∧ operator:

Γ@VAL ` es : σ ∧ Γ1, x : σ,Γ2@r ` er : τ
⇒ Γ1,Γ,Γ2@r ` er[x � es] : τ

Proof. By induction over the coeffect derivation, using the fact that
both x and es are annotated with use.

Lemma 10 holds for all flat coeffect systems, but it is weak. To
use it, the operational semantics must provide a way of partially
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evaluating a term with requirements R to a value. Assuming a call-
by-value reduction cbv, using the above definition of value:

Theorem 11 (Call-by-value subject reduction). In a flat coeffect
calculus, if Γ@r ` e : τ and e cbv e

′ then Γ@r ` e′ : τ .

Proof. A direct consequence of Lemma 10, using the flat coeffect
system requirement (r ∧ s)≤ (r⊕ s) to prove β-equality.

Call-by-name. A term (λx.e1) e2 can be β-reduced in the call-
by-name strategy even if both sub-expressions have contextual
requirements.

We call a flat coeffect algebra top-pointed if use (the coeffect
of variable use) is the greatest (top) coeffect scalar C and bottom-
pointed if it is the smallest (bottom) coeffect scalar with respect
to the order ≤. Liveness analysis is an example of top-pointed
coeffects as use = L and D ≤ L.

Lemma 12 (Top-pointed substitution). In a top-pointed flat coef-
fect calculus with (C,~,⊕, use, ign,≤) and the ∧ operator:

Γ@s ` es : σ ∧ Γ1, x : σ,Γ2@r ` er : τ
⇒ Γ1,Γ,Γ2@r ` er[x � es] : τ

Proof. Using sub-coeffecting (s≤ use) and Lemma 10.

As variables are annotated with the top element use, we can sub-
stitute a term es for any variable and use sub-coeffecting to get the
original typing (because s≤ use).

In a bottom-pointed coeffect system, substituting e for x in-
creases the context requirements. However, if the system satisfies
the condition that ∧ = ~ = ⊕ then the context requirements aris-
ing from the substitution can be associated with the context Γ. As
a result, substitution does not break soundness as in effect systems.
The requirement ∧ = ~ = ⊕ holds for our implicit parameters ex-
ample (all three operators are set union) and allows the following
substitution lemma:

Lemma 13 (Bottom-pointed substitution). In a bottom-pointed flat
coeffect calculus with (C,~,⊕, use, ign,≤) and the ∧ operator
where ∧ = ~ = ⊕ is idempotent and commutative:

Γ@s ` es : σ ∧ Γ1, x : σ,Γ2@r ` er : τ
⇒ Γ1,Γ,Γ2@r~ s ` er[x � es] : τ

Proof. By induction over `, using the idempotent, commutative
monoid structure to keep s with the free-variable context.

The structural system is precise enough to keep distinct coeffects
associated with each concrete variable. The flat variant described
here is flexible enough to let us always re-associate new context
requirements with the free-variable context.

The two substitution lemmas show that the call-by-name eval-
uation strategy can be used for certain coeffect calculi, including
liveness and implicit parameters. Assuming  cbn is the standard
call-by-name reduction, the following theorem holds:

Theorem 14 (Call-by-name subject reduction). In a flat coeffect
system that satisfies the conditions for Lemma 12 or Lemma 13, if
Γ@r ` e : τ and e cbn e

′ then Γ@r ` e′ : τ .

Proof. Direct consequence of Lemma 12 or Lemma 13.

5. Semantics
Coeffects provide a unified description of context dependence. In
the previous sections, we used this to define a unified coeffect
calculus. We now define a unified (categorical) semantics for the
coeffect calculus. The semantics can be instantiated for different
notions of context dependence and thus can model a wide range of
context-aware languages (both for flat and structural systems).

We relate the semantics to the equational theory and show
that it is sound with respect to term equality. For a variant of
the flat system, a similar result has already been shown in the
second author’s PhD dissertation [13]. The semantics is introduced
in pieces:

• Section 5.1 describes the signature (range and domain) of the
interpretation J−K, gives the interpretations for types and free-
variable contexts (in flat and structural systems), and defines the
signature of functors D which encode contexts.
• The first part of the semantics (Section 5.2) defines sequential

composition of context-dependent computations via indexed
comonads (introduced briefly in our previous work [15]) and
the indexed structural comonad structure (new here).
• More structure is needed for the semantics of application and

abstraction. Section 5.3 defines indexed monoidal operations
for splitting and merging contexts. Concrete structures are given
throughout for the semantics of the structural bounded reuse
and flat implicit parameter systems.
• Section 5.4 puts the pieces together, defining the semantics of

the coeffect calculus. The semantics is illustrated by executing
an example bounded-reuse program (Example 26).
• Section 5.5 shows our semantics sound with respect to the syn-

tactic equational theory of Section 4. This uses the derivation
of the categorical structures for the semantics as lax homomor-
phisms between structure in a category of coeffect annotations
I and the base category C.

In this section, C,D, I range over categories. The objects of a
category C are written obj(C). The category of functors between C
and D is written [C,D]. Exponential objects, representing function
types in our model, are written in two ways, either BA or A⇒ B.

5.1 Interpreting contexts and judgments
The semantics is parameterised by a coeffect algebra, with scalar
coeffects (C,~,⊕, use, ign,≤), coeffect shape (S, [−], �, 0̂, 1̂),
and (

n

, n,⊥). An interpretation J−K is given to types, free-variable
contexts, and type and coeffect judgments, with a base Cartesian-
closed category C for denotations and a category I of scalar coef-
fects, where obj(I) = C. Since C is Cartesian-closed, we use the
λ-calculus as the syntax for giving concrete definitions in C.

The interpretation J−K is parameterised by categorical struc-
tures which model a particular notion of context. The interpreta-
tion of free-variable contexts depends on shape, for which we give
concrete definitions for flat and structural shapes.

Interpreting judgments. Type and coeffect judgments are inter-
preted (given denotations) as morphisms in C, of the form:

JΓ@R ` e : τK : D
[Γ]
R JΓK→ JτK

The interpretation is a morphism from an interpretation of the
context Γ to the interpretation of the result. The functor D

[Γ]
R over

Γ encodes the semantic notion of context and is indexed by the
free-variable context shape [Γ] and coeffect annotation R.

The structure D can be thought of as a dependent product of
functors Dn over possible shapes n ∈ S

D : Πn:S .D
n where Dn : In → [Cn,C]

For a fixed context shape n the functor Dn : In → [Cn,C] maps
an n-indexed coeffect (think positions) to a functor from a context
Cn to an object in C. That is, given a coeffect annotation (matching
the shape of the context), we get a functor ∈ [Cn,C].

From a programming perspective, this functor defines a data
structure that models the additional context provided to the pro-
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gram. The shape of this data structure depends on the coeffect an-
notation In. For example, in bounded reuse, the annotation defines
the number of values needed for each variable and the functor will
be formed by lists of length matching the required number.

Types. Types are interpreted as objects of C, that is JτK : obj(C)
where function types have the interpretation as exponents:

Jσ r−→ τK = D1̂
〈r〉JσK⇒ JτK

The parameter of a function is wrapped by a functor D1̂
〈r〉 that

defines a context with singleton shape 1̂, matching the single value
that it contains. This interpretation is shared by all coeffect calculi.

Free-variable contexts. As described above, free-variable con-
texts Γ are given an interpretation as objects in C[Γ]. Thus, the
interpretation of contexts is shape dependent.

We define J−K on free-variable contexts for structural and flat
systems. For flat systems, there is only a single shape, so the inter-
pretation is a product type inside the Cartesian-closed category C.
For structural systems, the shape matches the number of variables
and so the model is a value in the product category C× . . .× C.

Flat coeffects. Recall that S = {?} and [Γ] = ?. Since the set
of positions ? is a singleton, then C? is isomorphic to C. Therefore
JΓK : obj(C), which is defined as:

Jx1 : τ1, . . . , xn : τnK = Jτ1K× . . .× JτnK
Denotations of typing judgments in a flat coeffect system are thus
of the form (where r ∈ I):
Jx1 : τ1, .., xn : τn@r ` e : τK : D?r(Jτ1K× ...× JτnK)→ JτK

Structural coeffects. Recall that S = N and [Γ] = |Γ| (number
of free variables), thus JΓK : obj(C|Γ|). This is defined similarly to
the above, but instead of using products in C, we use the product of
categories. Thus, denotations have the form:

Jx1 : τ1, . . . , xn : τn@R ` e : τK : DnR(Jτ1K, . . . , JτnK)→ JτK

where |R| = n and we use commas (instead of ×) to denote the
product of categories. This means that Dn : In → [Cn,C] is
a functor between an n-length vector of coeffects indices and an
n-ary endofunctor. Thus, the key difference between the flat and
structural interpretations of free-variable contexts is that flat uses
products of objects in C and the structural uses products of C in the
category of categories.

Example 15 (Bounded reuse). Recall bounded reuse has coeffect
scalars C = N and shapes S = N. We model contexts by replicat-
ing the value of each variable so there is a value for each use. This
matches the model used by Girard et al. [7]. Contexts are described
by B : Πn:N.(In → [Cn,C]), where for R = 〈r1, . . . , rn〉:

BnR(A1, . . . , An) = Ar11 × . . .×A
rn
n

BnR(f1, . . . , fn) = λ〈a1, . . . , an〉.〈(f1 ◦ a1), . . . , (fn ◦ an)〉
Thus each object in the free-variable context Ai is exponentiated
by its associated coeffect ri. For the morphism mapping part,
fi : Ai → Bi and ai : Ai

ri , thus (fi ◦ ai) : Bi
ri . The exponent

Ai
ri can be read as a product of ri copies of Ai, e.g.:

B3
1,0,2(A,B,C) = A1 ×B0 × C2 = (A)× 1× (C × C)

Example 16 (Implicit parameters). Recall the implicit parameter
calculus with scalar coeffects as sets of names paired with types
C = P(Name× Types) and flat shape with singleton S = {?}.

Its contexts are defined by I? : Πn:{∗}.(In → [Setn,Set])
which is equivalent to I→ [Set,Set] and defined as follows:

I?RA = A× JRK I?Rf = λ(a, r).(f a, r)

The interpretation JRKmaps a set of variable-type pairs to an object
representing a set of variable-value pairs in Set.

5.2 Sequential composition
Following the usual categorical semantics approach, we require a
notion of sequential composition for our denotations. We show first
a special case for D1̂ (where I1̂ = I and C1̂ = C) in both flat and
structural systems2 and thus D1̂ : I → [C,C]. Composition of
morphisms f : D1̂

SA → B and g : D1̂
RB → C is defined by an

indexed comonad (which we introduced previously [13, 15]).

Definition 17. An indexed comonad comprises a strict monoidal
category (I, •, I) and a functor F : I → [C,C] with two natural
transformations (where we write (FR)A as FRA):

(δX,Y )A : F(X•Y )A→ FX(FYA) (εI)A : FIA→ A

where δ is called comultiplication and ε is called counit. We require
indexed analogues of the usual comonad axioms (cf. [19]):

FR
δR,I //

δI,R ��
[C2]

FRFI

FRεI��
FIFR

[C1]

εIFR

// FR

FR•S•T

[C3]δR,S•T ��

δR•S,T // FR•SFT

δR,SFT��
FRFS•T

FRδS,T

// FRFSFT

An indexed comonad F : I→ [C,C] induces a notion of composi-
tion for all f : FSA→ B and g : FRB → C:

g◦̂f = g ◦ FRf ◦ δR,S : FR•SA→ C

with the identity îdA = (εI)A : FIA→ A for allA. Thus indexed
comonads induce a category which has the same objects as C and
morphisms CF(A,B) =

⋃
R∈I C(FRA,B). Note that an indexed

comonad is not a family of (ordinary) comonads, because identity
need only be defined for the functor FI .

Therefore, if D1̂ is an indexed comonad, there is a notion of
composition for denotations with a single coeffect index.

Example 18 (Bounded reuse). B1̂
R (Example 15) has an indexed

comonad structure, where the monoid (N, ∗, 1) from the coeffect
scalar for bounded reuse induces a monoidal category structure on
I (with 1 : I and the bifunctor ∗ : I× I→ I), with operations:

ε1̂
1 = λ〈a1〉.a1

δ1̂
R,S= λ〈a1..., aRS〉.

〈〈a1..., aS〉, 〈aS+1, ..., aS+S〉, ..., 〈a(R−1)S+1, ..., aRS〉〉
Indexed comonads essentially model single-variable contexts.
Counit here requires a single copy of the value from the context.
Comultiplication splits R times S copies of a value into R copies
of a context where each context contains just S copies of the value.

Remark 19. A semantics for dataflow coeffects is similar to
bounded reuse with DnR(A1, . . . , An) = (A1 × AR1

1 ) × ... ×
(An×AnRn), i.e., each free-variable has an extra value represent-
ing the “current” value. A dataflow indexed comonad is similar to
the above but with additive rather than multiplicative behaviour.

Example 20 (Implicit parameters). For the coeffect scalar monoid
(P(Name× Types),∪, ∅) of implicit parameters, I∗ (Example 16)
has an indexed comonad structure, with operations:

ε∅ = λ(a, ∅).a δR,S = λ(a, γ).((a, γ|S), γ|R)

where γ|R = {(x, v) | (x, v) ∈ γ, (x, t) ∈ R} filters incoming
implicit parameters to those variable-value pairs where the variable
is in the coeffect R.

2 Since 1̂ = 1 in structural and 1̂ ∼= 1 in flat, i.e., ? is isomorphic to 1.
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These two examples (which are new here) provide composition
for context-dependent computations indexed by coeffects in a flat
calculus. For structural coeffects, we need to compose morphisms
which have more than a single coeffect annotation. For this, we
introduce the new notion of structural indexed comonads.

Definition 21. A structural indexed comonad comprises a functor
D : Πn:S .(In → [Cn,C]) where (I, •, I) is a strict monoidal
category, 1̂ ∈ S which is terminal (e.g., a singleton set), an indexed
comonad over D1̂ : I1̂ → [C1̂,C] and a structural comultiplication
natural transformation:

(δnr,S)An : Dnr•̄SA
n → D1̂

rDnSA
n

where An ∈ Cn, r ∈ I, S ∈ In and •̄ : I× In → In is the monoid
left action that •-lifts scalar coeffects to shaped coeffects (i.e., the
scalar-vector version of •). Analogous laws to monoid left actions
for unitality and associativity hold for structural comultiplication:

DnI•̄R
δnI,R //

[SC1]

D1̂
IDnR

εID
n
R��

DnR

Dnr•̄(s•̄T )

[SC2]δnr,s•̄T ��

δnr•s,T // D1̂
r•sDnT

δ1̂r,sD
n
T��

D1̂
rDns•̄T

D1̂
rδ

n
s,T

// D1̂
rD1̂

sDnT

(1)

using axioms I •̄R = R and (r • s) •̄T = r •̄(s •̄T ) on coef-
fects respectively which are the monoid left action axioms for the
scalar-vector application of •. Note the use of indexed comonad
comultiplication δ1̂ for associativity [SC2].

Structural indexed comonads provide composition for morphisms
f : DnSA

n → B and singleton-shaped morphisms g : D1̂
rB → C:

g◦̂f = g ◦ D1̂
rf ◦ δnr,S : Dnr •̄SA

n → C

Note that this composition is asymmetric: the left morphism and
right morphisms have different shapes. To compose morphisms
which both have non-trivial context shapes requires additional
structure for manipulating contexts (shown in the next section).

Example 22 (Bounded reuse). B : Πn:N.(In → [Cn,C]) has a
structural indexed comonad structure with the indexed comonad
B1̂ (Example 18) and the following structural comultiplication:

δnr,S = λ(〈a1
1, . . . , a

1
r∗S1
〉, . . . , 〈an1 , . . . anr∗Sn

〉).
( ( 〈a1

1, . . . , a
1
S1
〉, ..., 〈an1 , . . . , anSn

〉),
( 〈a1

(S1+1), ..., a
1
(S1+1)+S1

〉, ..., 〈an(Sn+1), . . . , a
n
(Sn+1)+Sn

〉),
. . .

( 〈a1
(r−1)∗s1+1, .., a

1
r∗S1
〉, ..., 〈an(r−1)∗Sn+1, ..., a

n
r∗Sn
〉))

The input is an n-variable context containing r times Si copies of
ai for each variable. The output has r copies of a single n-variable
context containing Si copies of ai for each variable. Thus, δnr,S
partitions the incoming context into r-sized contexts.

Note that in the case of the flat system, a structural indexed como-
nad collapses to a standard indexed comonad on D1̂.

5.3 Splitting and merging contexts
Indexed comonads and structural indexed comonads give a seman-
tics for sequential composition of contextual computations. How-
ever, this does not provide enough structure for a semantics of the
full coeffect calculus. Core to the semantics of abstraction and ap-
plication is the merging and splitting of contexts. Recall the free-
variable contexts and coeffects in the (abs) and (app) rules:

(app)
Γ1@R ` e1... Γ2@S ` e2...

Γ1,Γ2@R n(t~S) ` e1 e2...
(abs)

Γ, x : σ@R

n 〈s〉 ` e...
Γ@R ` λx.e : σ

s−→ ...

Reading (app) bottom-up, the context of the application is split into
two contexts for each subterm e1 and e2. Reading (abs) bottom-up,
the context of the abstraction is merged with the singleton context
of the parameter. Capturing these notions in the denotational se-
mantics requires some additional structure.

A (non-indexed) comonadic semantics for the λ-calculus re-
quires a monoidal comonad with operation mA,B : FA × FB →
F(A × B) [19]. Previously, we defined a similar operation for the
semantics of a flat coeffect system, with an indexed monoidal oper-
ation mR,S

A,B for merging contexts. Dually, contexts were split with
nR,SA,B [15]. We used two operations for combining and splitting
the coeffect annotations, respectively. Here we generalize these to
shape-indexed versions using

n

and n .

Definition 23. A functor D : Πn:S .(In → [Cn,C]) is an indexed
lax (semi)monoidal functor and/or colax (semi)monoidal functor if
it has the following natural transformations respectively:

mn,m
R,S : DnRA× DmS B → Dn�mR

n

S(A×B)

nn,mR,S : Dn�mR nS(A×B)→ DnRA× DmS B

satisfying associativity coherence conditions. In both, shape de-
scriptions are combined by �. The first operation models context
merging and combines coeffects using

n

. The second models con-
text splitting, with n for the pre-split coeffect.

Example 24 (Bounded reuse). For bounded reuse, B is an indexed
lax and colax semimonoidal functor with the following operations:

mn,m
R,S = λ(〈a1, ..., an〉 × 〈b1, ..., bm〉).(〈a1, ..., an〉, 〈b1, ..., bm〉)

nn,mR,S = λ(〈a1, ..., an〉, 〈b1, ..., bm〉).(〈a1, ..., an〉 × 〈b1, ..., bm〉)

Here mn,m
R,S takes a pair of contexts and merges them simply by

replacing the product in C which pairs the two arguments (written
using ×) with products inside of B (written using tuple notation
(x, y)). The operation nn,mR,S is the inverse.

Example 25 (Implicit parameters). For implicit parameters, I? is
an indexed lax and colax semimonoidal functor with operations:

m?,?
R,S = λ((a, γR), (b, γS)).((a, b), γR ∪ γS)

n?,?R,S = λ((a, b), γ).((a, γ|R), (b, γ|S))

As in Example 20, γ|R and γ|S restrict the set of implicit parame-
ters γ to variable-value pairs for variables in R and S.

5.4 Putting it together
The semantics of the general coeffect calculus J−K is defined in
Figure 5, using the structures described in the previous sections.

Core rules. The denotation in (var) maps a context of the single-
ton shape 1̂ containing just a single variable τ (with coeffect I) to
a τ value using the counit operation.

The premise of (abs) takes a context of shape n � 1̂ with co-
effects R

n 〈s〉 and a free-variables context consisting of Γ and an
additional variable x. The denotation g : Dn�1̂

R

n

〈s〉JΓ, x : σK→ JτK
is pre-composed with m, such that its context is obtained by merg-
ing the declaration-site context (Γ) and call-site context (σ):

g ◦mn,1̂
R,〈s〉 : (DnRJΓK× D1̂

〈s〉JσK)→ JτK

This is uncurried to give a denotation from a context to an exponen-
tial object representing the abstraction, where the singleton-shaped
context becomes the source of the exponential.

The application rule (app) has two sub-expressions for the func-
tion and argument, with denotations requiring two distinct contexts:

g1 : DnRJΓ1K→ (D1̂
〈t〉JσK⇒ JτK) g2 : DmS JΓ2K→ JσK
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(var)
Jx : τ@〈use〉 ` x : τK = εI : D1̂

IJx : τK→ JτK
(abs)

JΓ, x :σ@R

n 〈s〉 ` e : τK = g : Dn�1̂
R

n

〈s〉JΓ, x :σK→ JτK

JΓ@R ` λx.e : σ
s−→ τK = Λ(g ◦mn,1̂

R,〈s〉) : DnRJΓK→ (D1̂
〈s〉JσK⇒ JτK)

(app)
JΓ1@R ` e1 : σ

t−→ τK = g1 : DnRJΓ1K→ (D1̂
〈t〉JσK⇒ JτK) JΓ2@S ` e2 : σK = g2 : DmS JΓ2K→ JσK

JΓ1,Γ2@R n (t ~ S) ` e1 e2 : τK = Λ−1g1 ◦ (id× (D1̂
〈t〉g2 ◦ δmt,S)) ◦ nn,mR,t~S : Dn�m

R n(t~S)
JΓ1,Γ2K→ JτK

(ctx)
JΓ@R ` e : τK = f : DnRJΓK→ JτK JΓ′@R′  Γ@R, ∅K = c : DmR′JΓ

′K→ DnRJΓK
JΓ′@R′ ` e : τK = f ◦ c : DmR′JΓ

′K→ JτK

(weak) JΓ, x :τ@R n 〈ign〉 Γ@R, ∅K = π1 ◦ nn,1̂R,〈ign〉 : Dn�1̂R n〈ign〉(JΓK× JσK)→ DnRJΓK

(contr) JΓ1, x :τ,Γ2@R n 〈s⊕ t〉 n Q Γ1, y :τ, z :τ,Γ2@R

n 〈s〉 n 〈t〉 n Q, [y, z 7→ x]K = mn,1̂,m
R,〈s⊕t〉,Q ◦ (id×∆s,t × id) ◦ nn,1̂,1̂,mR,〈s〉,〈t〉,Q

(exch) JΓ1, y :σ, x :τ,Γ2@R n 〈t〉 n 〈s〉 n Q Γ1, x :τ, y :σ,Γ2@R

n 〈s〉 n 〈t〉 n Q, ∅K = mn,1̂,1̂,m
R,〈s〉,〈t〉,Q ◦ (id× swap× id) ◦ nn,1̂,1̂,mR,〈t〉,〈s〉,Q

where swap : A×B → B ×A and Λ,Λ−1 denote currying and uncurrying respectively

Figure 5: Denotational semantics for the coeffect calculus

The target of g1 is an exponential object with singleton shape for
the parameter of type σ. To evaluate g1 and g2, the semantics of
(app) splits the incoming context over Γ1,Γ2 using n:

Dn�mR n (t~S)(JΓ1K× JΓ2K)
n
n,m
R,t~S−−−−−→ DnRJΓ1K× Dmt~SJΓ2K

Since e2 computes the argument for function e1, the denotation
g2 is sequentially composed with the parameter part of g1. Thus,
the structural indexed comonad (where •̄ = ~) is used with g2

to compute the correct context for the parameter of the function
denotation g1:

Dmt~SJΓ2K
δmt,S−−→ D1̂

〈t〉D
m
S JΓ2K

D1̂
〈t〉g2−−−−→ D1̂

〈t〉JσK

This is composed with the previous equation by lifting to the right-
component of the product:

DnRJΓ1K× Dmt~SJΓ2K
id×(D1̂

〈t〉g2 ◦ δ
m
t,S)

−−−−−−−−−−−→ DnRJΓ1K× D1̂
〈t〉JσK

This equation computes the calling context and parameter context
for the function e1, which is then composed with the uncurried g1

denotation as shown in the (app) rule in Figure 5.

Structural rules. In Figure 5, (ctx) composes the denotation of an
expression with a transformation c providing the semantic struc-
tural rules. The semantics of structural rules are defined by using
nn,mR,S to split contexts, transforming the components, and merging
the transformed contexts using mn,m

R,S . The (contr) rule uses an ad-
ditional operation which duplicates a variable inside a context:

∆r,s : D1̂
〈r⊕s〉A→ D1̂�1̂

〈r〉

n

〈s〉(A×A)

Example 26. We demonstrate the semantics with a concrete exam-
ple for the bounded reuse calculus. Consider the following term:

f : Z 2−→ Z, x : Z@〈2, 4〉 ` (λz.z + z) (f x)

Let the denotation of the function body, prior to contraction, be
g = Jx : Z, y : Z@〈1, 1〉 ` (+x) y : ZK3. The example term’s de-

3 The full semantics has J+K : D0
〈〉1 → (D1

1Z ⇒ (D1
1Z ⇒ Z)) as

primitive and uses double application (+ e1) e2.

notation is then constructed as follows:

J@〈〉 ` λz.(+z)z : Z 2−→ ZK = Λ(g ◦∆1,1 ◦m0,1
〈〉,〈2〉) (2)

Jf : Z 2−→ Z, x : Z@〈1, 2〉 ` fx : ZK
= Λ−1ε1 ◦ (id× (Dε1 ◦ δ1

2,〈1〉)) ◦ n1,1
〈1〉,〈2〉

= Λ−1ε1 ◦ n1,1
〈1〉,〈2〉 (3)

Jf : Z 2−→ Z, x : Z@〈2, 4〉 ` (λz.(+z)z) (fx) : ZK
= Λ−1(2) ◦ (id× D(3) ◦ δ2

2,〈2,1〉) ◦ n0,2
〈〉,〈4,2〉

= g ◦∆1,1 ◦m0,1
〈〉,〈2〉 ◦ (id× D(3) ◦ δ2

2,〈2,1〉) ◦ n0,2
〈〉,〈4,2〉 (4)

where (3) and (4) are simplified. We “run” this semantics on an
input, evaluating each step of the denotation as a function. We write
context objects, e.g., D2

〈R,S〉(A,B) as 〈(a1, ..., aR), (b1, ..., bS)〉
and products of contexts in C, e.g., DnRA× DmS B, as (a× b).

〈(f1, f2), (x1, x2, x3, x4)〉 : D2
〈2,4〉((D1

〈2〉Z⇒ Z),Z)
n0,2
〈〉,〈2,4〉−−−−−−−→ 〈〉 × 〈(f1, f2), (x1, x2, x3, x4)〉 : D0

〈〉1× D2
〈2,4〉(as above)

id × δ2
2,〈1,2〉−−−−−−−→ 〈〉 × 〈〈f1, (x1, x2)〉, 〈f2, (x3, x4)〉〉

: D0
〈〉1× D1

〈2〉D
2
〈2,1〉((D1

〈2〉Z⇒ Z),Z)
id × Dn1,1

〈1〉,〈2〉−−−−−−−→ 〈〉 × 〈〈f1〉 × 〈x1, x2〉, 〈f2〉 × 〈x3, x4〉〉
: D0
〈〉1× D1

〈2〉(D1
〈1〉(D1

〈2〉Z⇒ Z)× D1
〈2〉Z)

id × D(Λ−1ε1)−−−−−−−→ 〈〉 × 〈f1〈x1, x2〉, f2〈x3, x4〉〉 : D0
〈〉1× D1

〈2〉Z
m0,1
〈〉,〈1〉−−−−−−−→ 〈f1〈x1, x2〉, f2〈x3, x4〉〉 : D1

〈2〉Z
∆1,1−−−−−−−→ 〈(f1〈x1, x2〉, f2〈x3, x4〉)〉 : D1

〈1,1〉(Z× Z)

g−−−−−−−→ J+K 〈f1〈x1, x2〉〉 〈f2〈x3, x4〉〉 : Z

5.5 Soundness, with respect to the equational theory
Our denotational semantics for the coeffect calculus is sound with
respect to the equational theory of Section 4. That is:

Theorem 27 (Soundness).

Γ@R ` e ≡ e′ : τ ⇒ JΓ@R ` e : τK ≡ JΓ@R ` e′ : τK

Proof of this follows from an interesting result which we first un-
pack: determining whether JΓ@R ` e1 : τK≡JΓ@S ` e2 : τK fol-
lows from a proof (on coeffect annotations) that R = S.
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Lemma 28. Every coeffect algebra axiom corresponds to an ax-
iom of one of the categorical structures introduced here (indexed
(structural) comonad or indexed (co)lax monoidal functor).

For example, the monoid axiom X~use = X for scalar coeffects
corresponds to indexed comonad axiom D1̂

Xεuse ◦ δ1̂
X,use = id

D1̂
X

(which requires the monoid axiom to hold). This lemma follows
from our derivation of the indexed categorical structures here. They
are not derived ad hoc but systematically as (lax) homomorphisms
(structure-preserving maps) between the structure of coeffect anno-
tations in I and the structure of denotations in C.

Proposition 29. An indexed comonad on D witnesses that D is a
colax monoid homomorphism between the (strict) monoidal cate-
gories (I, •, I) and ([C,C], ◦, 1C) (endofunctor composition).

Unpacking this, a monoid homomorphism maps between the
underlying sets of two monoids, preserving the monoid structure
of one into the other, i.e., given monoids (X, •, I) and (Y,⊗, E)
then a monoid homomorphism is a mapping F : X → Y such that:

FX ⊗ FY ≡ F (X • Y ) E ≡ FI (5)

The axioms of each monoid are preserved trivially by these equal-
ities, e.g., FX ≡ F (X • I) ≡ FX ⊗ FI ≡ FX ⊗ E ≡ FX .
A homomorphism is lax if the above equalities (5) are instead mor-
phisms (which we say witness the homomorphism) and colax if
these morphisms go in the opposite direction. Thus, a colax monoid
homomorphism is witnessed by:

δ : FX ⊗ FY ← F (X • Y ) ε : E ← FI

Note our choice of morphism names. F no longer preserves the
monoid axioms up to equality but has axioms on δ and ε, e.g.,
F (X • I)

δ−→ FX ⊗ FI id⊗ε−−−→ FX ⊗ E equals FX id−→ FX .
Our indexed comonad definition is equivalent to D being a colax

homomorphism between strict monoidal category (X, •, I) and the
monoidal category of C-endofunctors (Y,⊗, E) = ([C,C], ◦, 1C),
with endofunctor composition ◦ and the trivial endofunctor 1C;
monoids are now at the level of categories. The indexed comonads
axioms are the axioms of the colax homomorphism. Equivalently,
D is a colax monoidal functor.

A similar approach is taken to deriving the remaining structures
below, though we give less detail for brevity.

Proposition 30. A structural indexed comonad provides δnR,S :

D1̂
rDnSA

n ← Dnr~SA
n which is a family of morphisms (indexed

by shapes n) witnessing that D is a colax homomorphism be-
tween the following monoid left-actions: (In,~) for (I,~, ign) and
(Cn,C], ◦̂) for ([C,C], ◦, 1C), defined:

(r : I) ~ (〈s1, ..., sn〉 : In) = 〈r~s1, ..., r~sn〉 : In

(D1̂
r : [C,C]) ◦̂ (DnS : [Cn,C]) = D1̂

r ◦ DnS : [Cn,C]

The axioms are the lax versions of the monoid left-action laws.

The lax and colax indexed monoidal operations mn,m
R,S and nn,mR,S

follow a similar derivation but as lax and colax monoid homomor-
phisms between composite monoids on coeffect annotations and
shapes and × in C. The details are elided here.

Returning to soundness, our semantics is therefore defined in
terms of structures whose axioms correspond to axioms of the syn-
tactic equational theory. Consequently, semantic proofs correspond
to syntactic proofs, modulo naturality laws and product/exponent
laws in C. This result holds in the general coeffect calculus and
semantics since every semantic structure has a unique correspond-
ing structure on coeffect annotations (i.e., (C,~, use) for sequen-
tial composition of unary denotations, (C, n) for splitting contexts,
(C, n ) for joining contexts).

Example 31. Section 4.1 showed η-equality for structural systems,
which uses the properties (1) n =

n

= × for structural systems
and (2) s~〈use〉 = 〈s~use〉 = 〈s〉. The semantics here is sound
with respect to η-equality; the proof uses the corresponding axioms
(1) nn,mR,S ◦ mn,m

R,S = id and (2) εuseDms ◦ δmuse,s = id (structural
indexed comonad unit law [SC1], Definition 21).

The full semantic proofs of βη-equality then correspond to syn-
tactic proofs on coeffect annotations. For brevity, we omit the full
proofs here.

6. Related work
We expand on the overview of related work in Section 2.5.

Bounded reuse. The (storage) rule for bounded linear logic ex-
plains the contextual requirements induced by proposition reuse [7]:

(storage)
!Y Γ ` A

!XY Γ `!XA

where XY = 〈XY1, .., XYn〉 is the scalar multiple of a vector.
This rule is akin to the δn operation of structural indexed comon-
ads, indeed, we can model it exactly using δnX,Ȳ and the lifting D1

X .
In BLL, the modality !X is a constructor and may appear both

on the left- and right-hand sides of `. In this paper, reuse bounds
annotate typing rules, thus there is no constructor corresponding to
bounded reuse in the language; reuse bounds are meta-level. Our
choice to work at the meta-level means that the coeffect calculus
provides a unified analysis and semantics to different notions of
context; its term language is that of the standard λ-calculus.

Semantics. Previously we briefly introduced indexed comon-
ads [15] without derivation. Here we derived indexed comonads
as colax homomorphisms. This is dual to the parametric effect
monad structure defined as a lax homomorphism [8]. Our seman-
tics requires additional structure not needed for effects due to the
asymmetry inherent in the λ-calculus.

The necessity modality� in S4 logic corresponds to a comonad
with lax monoidal functor structure m : �A×�B → �(A×B).
Bierman and de Paiva [2] defined a term language corresponding
to a natural deduction S4, where contexts contain sequences of �-
wrapped assumptions x1 : �A1, . . . xn : �An. Modelling these
judgments does not require a context-splitting operation unlike in
our approach, which uses the n operation of the form n : �(A ×
B) → �A × �B. Our approach can be thought of as having a
single � modality over the context which can represent both flat
whole-context dependence and structural per-variable dependence.

Coeffect-like calculi Recent works have also developed coeffect
systems, following related approaches. Brunel, Gaboardi, Mazza,
and Zdancewic derive a kind of general structural coeffect system,
taking inspiration from bounded linear logic [3]. Their work pro-
vides an operational semantics and proves soundness of its coeffect
system with respect to the semantics. Their coeffect system pro-
vides a coeffect-indexed !-modality as a type constructor in the lan-
guage, and explicit coeffect-inducing expressions for a particular
notion of coeffect.

This differs to our approach where coeffects are implicit: they
are not attached to a type constructor and can be introduced through
variable use, e.g. the (var) rule. The coeffect systems of Brunel
et al. allow “local coeffects”, which we called structural (per-
variable), but not “global coeffects” (flat or per-context). Our previ-
ous work provided just global/flat (per context) coeffects. Our new
system here reconciles both kinds into one system.

There are a number of encouraging similarities in the approach
of Brunel et al. Their semantics is similar (even isomorphic in
some parts) to ours, defining an indexed comonad like structure
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in terms of a positive action • : S × A → A on a monoidal
category of coeffect annotations S (and base category A) and
an exponential action providing related operations to our indexed
monoidal operations m and n.

There has been some other related bounded linear logic work,
by Ghica and Smith, with “resource-aware types” annotated by a
semiring of resource bounds [5]. This allows reuse bounds for BLL
to be tracked, as well as other kinds of concurrency information. A
categorical semantics is provided which is similar in style to that of
Brunel et al. and which loosely resembles our indexed comonad
approach (but does not require the additional indexed monoidal
structures we used here). Included in their work, which this paper
lacks, is a procedure for type-inference (using a decision procedure
on semirings). Future work for us is to adopt a similar approach for
inference of coeffects in our system.

Both the works of Brunel et al. and Ghica et al. use a semiring
structure for annotations. Our scalar coeffect structure is similar: it
is a semiring without commutativity of the + operation (although
all our examples here have a commutative +) and without the
absorption law for multiplication (which only some of our systems
have).

Future work is to unify the approaches of this paper and the co-
effect systems of Brunel et al. and Ghica et al. Initial comparisons
show several similarities, suggesting that unification is plausible.

7. Conclusions
In this paper, we looked at two forms of context-dependence anal-
ysis – flat coeffect systems that track whole-context requirements
(such as implicit parameters, resources, or platform version) and
structural coeffects that track per-variable requirements (such as
usage or data access patterns). The newly introduced structural
system makes applications such as liveness, bounded reuse, and
dataflow analysis (from our earlier work) practically useful. With
the move towards cross-platform systems running in diverse envi-
ronments, analysing context dependence is vital for reasoning and
compilation. The coeffect calculus provides a foundation for fur-
ther study, similar to the type-and-effect discipline.

We presented the system together with its syntactic equational
theory and categorical semantics. The equational theory is pre-
sented in order to explain how the systems work, but it also pro-
vides a basis for an operational semantics for concrete systems.
Exploring these, and their connection to the denotational seman-
tics, is further work.
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