100 research outputs found

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR

    Computing gravitational waves from slightly nonspherical stellar collapse to black hole: Odd-parity perturbation

    Full text link
    Nonspherical stellar collapse to a black hole is one of the most promising gravitational wave sources for gravitational wave detectors. We numerically study gravitational waves from a slightly nonspherical stellar collapse to a black hole in linearized Einstein theory. We adopt a spherically collapsing star as the zeroth-order solution and gravitational waves are computed using perturbation theory on the spherical background. In this paper we focus on the perturbation of odd-parity modes. Using the polytropic equations of state with polytropic indices np=1n_p=1 and 3, we qualitatively study gravitational waves emitted during the collapse of neutron stars and supermassive stars to black holes from a marginally stable equilibrium configuration. Since the matter perturbation profiles can be chosen arbitrarily, we provide a few types for them. For np=1n_p=1, the gravitational waveforms are mainly characterized by a black hole quasinormal mode ringing, irrespective of perturbation profiles given initially. However, for np=3n_p=3, the waveforms depend strongly on the initial perturbation profiles. In other words, the gravitational waveforms strongly depend on the stellar configuration and, in turn, on the ad hoc choice of the functional form of the perturbation in the case of supermassive stars.Comment: 31 pages, accepted for publication in Phys. Rev. D, typos and minor errors correcte

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Clinical features and outcomes of tuberculosis in transplant recipients as compared with the general population: a retrospective matched cohort study

    Get PDF
    AbstractThere are no previous studies comparing tuberculosis in transplant recipients (TRs) with other hosts. We compared the characteristics and outcomes of tuberculosis in TRs and patients from the general population. Twenty-two TRs who developed tuberculosis from 1996 through 2010 at a tertiary hospital were included. Each TR was matched by age, gender and year of diagnosis with four controls selected from among non-TR non-human immunodeficiency virus patients with tuberculosis. TRs (21 patients, 96%) had more factors predisposing to tuberculosis than non-TRs (33, 38%) (p <0.001). Pulmonary tuberculosis was more common in non-TRs (77 (88%) vs. 12 TRs (55%); p 0.001); disseminated tuberculosis was more frequent in TRs (five (23%) vs. four non-TRs (5%); p 0.005). Time from clinical suspicion of tuberculosis to definitive diagnosis was longer in TRs (median of 14 days) than in non-TRs (median of 0 days) (p <0.001), and invasive procedures were more often required (12 (55%) TRs and 15 (17%) non-TRs, respectively; p 0.001). Tuberculosis was diagnosed post-mortem in three TRs (14%) and in no non-TRs (p <0.001). Rates of toxicity associated with antituberculous therapy were 38% in TRs (six patients) and 10% (seven patients) in non-TRs (p 0.014). Tuberculosis-related mortality rates in TRs and non-TRs were 18% and 6%, respectively (p 0.057). The adjusted Cox regression analysis showed that the only predictor of tuberculosis-related mortality was a higher number of organs with tuberculosis involvement (adjusted hazard ratio 8.6; 95% CI 1.2–63). In conclusion, manifestations of tuberculosis in TRs differ from those in normal hosts. Post-transplant tuberculosis resists timely diagnosis, and is associated with a higher risk of death before a diagnosis can be made

    New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production

    Full text link
    Since the work of Sauter, and Heisenberg, Euler and K\"ockel, it has been understood that vacuum polarization effects in quantum electrodynamics (QED) predict remarkable new phenomena such as light-light scattering and pair production from vacuum. However, these fundamental effects are difficult to probe experimentally because they are very weak, and they are difficult to analyze theoretically because they are highly nonlinear and/or nonperturbative. The Extreme Light Infrastructure (ELI) project offers the possibility of a new window into this largely unexplored world. I review these ideas, along with some new results, explaining why quantum field theorists are so interested in this rapidly developing field of laser science. I concentrate on the theoretical tools that have been developed to analyze nonperturbative vacuum pair production.Comment: 20 pages, 9 figures; Key Lecture at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields", 29 Sept - 2 Oct. 2008, Frauenworth Monastery, Germany; v2: refs updated, English translations of reviews of Nikishov and Ritu

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Continental scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources

    Get PDF
    While Antarctica is often described as a pristine environment, there is an increasing awareness of the potential threats from local pollution sources including tourist ships and emissions associated with scientific activities. However, to date there has been no systematic attempt to model the impacts of such pollutants at the continental scale. Indeed, until very recently there was not even a sulphur emission budget available for Antarctica. Here we present the first comprehensive study of atmospheric pollution in Antarctica using a limited area chemistry climate model, and a monthly emissions inventory for sulphur from maintenance of research stations, ground and air traffic, shipping and the active Erebus volcano. We find that ship emissions, both sulphurous and black carbon, dominate anthropogenic pollution near the ground. Their prevalence is likely to rise dramatically if recent trends in tourism continue
    • …
    corecore