92 research outputs found

    Colloquium: Hidden Order, Superconductivity, and Magnetism -- The Unsolved Case of URu2Si2

    Full text link
    This Colloquium reviews the 25 year quest for understanding the continuous (second-order) mean-field-like phase transition occurring at 17.5 K in URu2Si2. About ten years ago, the term hidden order (HO) was coined and has since been utilized to describe the unknown ordered state, whose origin cannot be disclosed by conventional solid-state probes, such as x rays, neutrons, or muons. HO is able to support superconductivity at lower temperatures (Tc ~ 1.5 K), and when magnetism is developed with increasing pressure both the HO and the superconductivity are destroyed. Other ways of probing the HO are via Rh-doping and very large magnetic fields. During the last few years a variety of advanced techniques have been tested to probe the HO state and their attempts will be summarized. A digest of recent theoretical developments is also included. It is the objective of this Colloquium to shed additional light on the HO state and its associated phases in other materials.Comment: 25 pages, 16 figures, published in Reviews of Modern Physic

    Electronic structure theory of the hidden order material URu2_2Si2_2

    Get PDF
    We report a comprehensive electronic structure investigation of the paramagnetic (PM), the large moment antiferromagnetic (LMAF), and the hidden order (HO) phases of URu2_2Si2_2. We have performed relativistic full-potential calculations on the basis of the density functional theory (DFT), employing different exchange-correlation functionals to treat electron correlations within the open 5f5f-shell of uranium. Specifically, we investigate---through a comparison between calculated and low-temperature experimental properties---whether the 5f5f electrons are localized or delocalized in URu2_2Si2_2. We also performed dynamical mean field theory calculations (LDA+DMFT) to investigate the temperature evolution of the quasi-particle states at 100~K and above, unveiling a progressive opening of a quasi-particle gap at the chemical potential when temperature is reduced. A detailed comparison of calculated properties with known experimental data demonstrates that the LSDA and GGA approaches, in which the uranium 5f5f electrons are treated as itinerant, provide an excellent explanation of the available low-temperature experimental data of the PM and LMAF phases. We show furthermore that due to a materials-specific Fermi surface instability a large, but partial, Fermi surface gapping of up to 750 K occurs upon antiferromagnetic symmetry breaking. The occurrence of the HO phase is explained through dynamical symmetry breaking induced by a mode of long-lived antiferromagnetic spin-fluctuations. This dynamical symmetry breaking model explains why the Fermi surface gapping in the HO phase is similar but smaller than that in the LMAF phase and it also explains why the HO and LMAF phases have the same Fermi surfaces yet different order parameters. Suitable derived order parameters for the HO are proposed to be the Fermi surface gap or the dynamic spin-spin correlation function.Comment: 23 pages, 20 figure

    Efficient metallic spintronic emitters of ultrabroadband terahertz radiation

    Full text link
    Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-P\'erot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.Comment: 18 pages, 10 figure

    Precise study of the resonance at Q0=(1,0,0) in URu2Si2

    Full text link
    New inelastic neutron scattering experiments have been performed on URu2Si2 with special focus on the response at Q0=(1,0,0), which is a clear signature of the hidden order (HO) phase of the compound. With polarized inelastic neutron experiments, it is clearly shown that below the HO temperature (T0 = 17.8 K) a collective excitation (the magnetic resonance at E0 \approx 1.7 meV) as well as a magnetic continuum co-exist. Careful measurements of the temperature dependence of the resonance lead to the observation that its position shifts abruptly in temperature with an activation law governed by the partial gap opening and that its integrated intensity has a BCS-type temperature dependence. Discussion with respect to recent theoretical development is made

    Magnetic state of plutonium ion in metallic Pu and its compounds

    Full text link
    By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and electronic structure have been investigated for plutonium in \delta and \alpha phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For metallic plutonium in both phases in agreement with experiment a nonmagnetic ground state was found with Pu ions in f^6 configuration with zero values of spin, orbital, and total moments. This result is determined by a strong spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a pseudogap between them, so that f^{5/2} subshell is already nearly completely filled with six electrons before Coulomb correlation effects were taken into account. The competition between spin-orbit coupling and exchange (Hund) interaction (favoring magnetic ground state) in 5f shell is so delicately balanced, that a small increase (less than 15%) of exchange interaction parameter value from J_H=0.48eV obtained in constrain LDA calculation would result in a magnetic ground state with nonzero spin and orbital moment values. For Pu compounds investigated in the present work, predominantly f^6 configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic moment values. Whereas pure jj coupling scheme was found to be valid for metallic plutonium, intermediate coupling scheme is needed to describe 5f shell in Pu compounds. The results of our calculations show that both spin-orbit coupling and exchange interaction terms in the Hamiltonian must be treated in a general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape

    Nonlinear Magneto-Optics of Fe Monolayers from first principles: Structural dependence and spin-orbit coupling strength

    Full text link
    We calculate the nonlinear magneto-optical response of free-standing fcc (001), (110) and (111) oriented Fe monolayers. The bandstructures are determined from first principles using a full-potential LAPW method with the additional implementation of spin-orbit coupling. The variation of the spin-orbit coupling strength and the nonlinear magneto-optical spectra upon layer orientation are investigated. We find characteristic differences which indicate an enhanced sensitivity of nonlinear magneto-optics to surface orientation and variation of the in-plane lattice constants. In particular the crossover from onedimensional stripe structures to twodimensional films of (111) layers exhibits a clean signature in the nonlinear Kerr-spectra and demonstrates the versatility of nonlinear magneto-optics as a tool for in situ thin-film analysis.Comment: 28 pages, RevTeX, psfig, submitted to PR
    corecore