63 research outputs found

    Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex

    Get PDF
    Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD and OASIS. Brain-age delta was associated with abnormal amyloid-b, more advanced stages (AT) of AD pathology and APOE-e4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging related to markers of AD and neurodegeneration.The project leading to these results has received funding from “la Caixa” Foundation (ID 100010434), under agreement LCF/PR/GN17/50300004 and the Alzheimer’s Association and an international anonymous charity foundation through the TriBEKa Imaging Platform project (TriBEKa-17-519007). Additional support has been received from the Universities and Research Secretariat, Ministry of Business and Knowledge of the Catalan Government under the grant no. 2017-SGR-892 and the Spanish Research Agency (AEI) under project PID2020-116907RB-I00 of the call MCIN/ AEI /10.13039/501100011033. FB is supported by the NIHR biomedical research center at UCLH. MSC receives funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 948677), the Instituto de Salud Carlos III (PI19/00155), and from a fellowship from ”la Caixa” Foundation (ID 100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No 847648 (LCF/BQ/PR21/11840004).Report de recerca signat per 27 autors/es: Irene Cumplido-Mayoral 1,2; Marina GarcĂ­a-Prat 1; GrĂ©gory Operto 1,3,4; Carles Falcon 1,3,5; Mahnaz Shekari 1,2,3; Raffaele Cacciaglia 1,3,4; Marta MilĂ -AlomĂ  1,2,3,4; Luigi Lorenzini 6; Silvia Ingala 6; Alle Meije Wink 6; Henk JMM Mutsaerts 6; Carolina MinguillĂłn 1,3,4; Karine Fauria 1,4; JosĂ© Luis Molinuevo 1; Sven Haller 7; Gael Chetelat 8,10; Adam Waldman 9; Adam Schwarz 10; Frederik Barkhof 6,11; Ivonne Suridjan 12, 11; Gwendlyn Kollmorgen 13; Anna Bayfield 13; Henrik Zetterberg 14,15,16,17,18; Kaj Blennow 14,15 12; Marc SuĂĄrez-Calvet 1,3,4,19; VerĂłnica Vilaplana 20; Juan Domingo Gispert 1,3,5; ALFA study; EPAD study; ADNI study; OASIS study // 1) BarcelonaÎČeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; 2) Universitat Pompeu Fabra, Barcelona, Spain; 3) IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; 4) CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; 5) Centro de InvestigaciĂłn BiomĂ©dica en Red de BioingenierĂ­a, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; 6) Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; 7) CIRD Centre d'Imagerie Rive Droite, Geneva, Switzerland; 8) Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France; 9) Centre for Dementia Prevention, Edinburgh Imaging, and UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK; 10) Takeda Pharmaceutical Company Ltd, Cambridge, MA, USA; 11) Institutes of Neurology and Healthcare Engineering, University College London, London, UK; 12) Roche Diagnostics International Ltd, Rotkreuz, Switzerland; 13) Roche Diagnostics GmbH, Penzberg, Germany; 14) Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden; 15) Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; 16) Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; 17) UK Dementia Research Institute at UCL, London, United Kingdom; 18) Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; 19) Servei de Neurologia, Hospital del Mar, Barcelona, Spain; 20) Department of Signal Theory and Communications, Universitat PolitĂšcnica de Catalunya, Barcelona, Spain.Preprin

    Interactive effect of age and APOE-Δ4 allele load on white matter myelin content in cognitively normal middle-aged subjects

    Get PDF
    The apolipoprotein E gene (APOE) Δ4 allele has a strong and manifold impact on cognition and neuroimaging phenotypes in cognitively normal subjects, including alterations in the white matter (WM) microstructure. Such alterations have often been regarded as a reflection of potential thinning of the myelin sheath along axons, rather than pure axonal degeneration. Considering the main role of APOE in brain lipid transport, characterizing the impact of APOE on the myelin coating is therefore of crucial interest, especially in healthy APOE-Δ4 homozygous individuals, who are exposed to a twelve-fold higher risk of developing Alzheimer's disease (AD), compared to the rest of the population. We examined T1w/T2w ratio maps in 515 cognitively healthy middle-aged participants from the ALFA study (ALzheimer and FAmilies) cohort, a single-site population-based study enriched for AD risk (68 APOE-Δ4 homozygotes, 197 heterozygotes, and 250 non-carriers). Using tract-based spatial statistics, we assessed the impact of age and APOE genotype on this ratio taken as an indirect descriptor of myelin content. Healthy APOE-Δ4 carriers display decreased T1w/T2w ratios in extensive regions in a dose-dependent manner. These differences were found to interact with age, suggesting faster changes in individuals with more Δ4 alleles. These results obtained with T1w/T2w ratios, confirm the increased vulnerability of WM tracts in APOE-Δ4 healthy carriers. Early alterations of myelin content could be the result of the impaired function of the Δ4 isoform of the APOE protein in cholesterol transport. These findings help to clarify the possible interactions between the APOE-dependent non-pathological burden and age-related changes potentially at the source of the AD pathological cascade

    Brain alterations in the early Alzheimer's continuum with amyloid-ÎČ, tau, glial and neurodegeneration CSF markers

    Get PDF
    Higher grey matter volumes/cortical thickness and fluorodeoxyglucose uptake have been consistently found in cognitively unimpaired individuals with abnormal Alzheimer's disease biomarkers compared with those with normal biomarkers. It has been hypothesized that such transient increases may be associated with neuroinflammatory mechanisms triggered in response to early Alzheimer's pathology. Here, we evaluated, in the earliest stages of the Alzheimer's continuum, associations between grey matter volume and fluorodeoxyglucose uptake with CSF biomarkers of several pathophysiological mechanisms known to be altered in preclinical Alzheimer's disease stages. We included 319 cognitively unimpaired participants from the ALFA+ cohort with available structural MRI, fluorodeoxyglucose PET and CSF biomarkers of amyloid-ÎČ and tau pathology (phosphorylated tau and total tau), synaptic dysfunction (neurogranin), neuronal and axonal injury (neurofilament light), glial activation (soluble triggering receptor on myeloid cells 2, YKL40, GFAP, interleukin-6 and S100b) and α-synuclein using the Roche NeuroToolKit. We first used the amyloid-ÎČ/tau framework to investigate differences in the neuroimaging biomarkers between preclinical Alzheimer's disease stages. Then, we looked for associations between the neuroimaging markers and all the CSF markers. Given the non-negative nature of the concentrations of CSF biomarkers and their high collinearity, we clustered them using non-negative matrix factorization approach (components) and sought associations with the imaging markers. By groups, higher grey matter volumes were found in the amyloid-ÎČ-positive tau-negative participants with respect to the reference amyloid-ÎČ-negative tau-negative group. Both amyloid-ÎČ and tau-positive participants showed higher fluorodeoxyglucose uptake than tau-negative individuals. Using the obtained components, we observed that tau pathology accompanied by YKL-40 (astrocytic marker) was associated with higher grey matter volumes and fluorodeoxyglucose uptake in extensive brain areas. Higher grey matter volumes in key Alzheimer-related regions were also found in association with two other components characterized by a higher expression of amyloid-ÎČ in combination with different glial markers: one with higher GFAP and S100b levels (astrocytic markers) and the other one with interleukin-6 (pro-inflammatory). Notably, these components' expression had different behaviours across amyloid-ÎČ/tau stages. Taken together, our results show that CSF amyloid-ÎČ and phosphorylated tau, in combination with different aspects of glial response, have distinctive associations with higher grey matter volumes and increased glucose metabolism in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and fluorodeoxyglucose uptake at the earliest stages of the Alzheimer's continuum, which may revert later on the course of the disease when neurodegeneration drives structural and metabolic cerebral changes

    APOE ɛ4 exacerbates age-dependent deficits in cortical microstructure.

    Get PDF
    The apolipoprotein E ɛ4 allele is the primary genetic risk factor for the sporadic type of Alzheimer's disease. However, the mechanisms by which apolipoprotein E ɛ4 are associated with neurodegeneration are still poorly understood. We applied the Neurite Orientation Dispersion Model to characterize the effects of apolipoprotein ɛ4 and its interactions with age and education on cortical microstructure in cognitively normal individuals. Data from 1954 participants were included from the PREVENT-Dementia and ALFA (ALzheimer and FAmilies) studies (mean age = 57, 1197 non-carriers and 757 apolipoprotein E ɛ4 carriers). Structural MRI datasets were processed with FreeSurfer v7.2. The Microstructure Diffusion Toolbox was used to derive Orientation Dispersion Index maps from diffusion MRI datasets. Primary analyses were focused on (i) the main effects of apolipoprotein E ɛ4, and (ii) the interactions of apolipoprotein E ɛ4 with age and education on lobar and vertex-wise Orientation Dispersion Index and implemented using Permutation Analysis of Linear Models. There were apolipoprotein E ɛ4 × age interactions in the temporo-parietal and frontal lobes, indicating steeper age-dependent Orientation Dispersion Index changes in apolipoprotein E ɛ4 carriers. Steeper age-related Orientation Dispersion Index declines were observed among apolipoprotein E ɛ4 carriers with lower years of education. We demonstrated that apolipoprotein E ɛ4 worsened age-related Orientation Dispersion Index decreases in brain regions typically associated with atrophy patterns of Alzheimer's disease. This finding also suggests that apolipoprotein E ɛ4 may hasten the onset age of dementia by accelerating age-dependent reductions in cortical Orientation Dispersion Index.</p

    Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum

    Get PDF
    PURPOSE: Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([18F]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. METHODS: We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-ÎČ (AÎČ) positive. Associations between GFAP markers and [18F]FDG uptake were studied. We also investigated whether these associations were modified by AÎČ and tau status (AT stages). RESULTS: Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [18F]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of AÎČ pathology but became negative in AÎČ-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. CONCLUSIONS: Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes

    Pre-pandemic Alzheimer Disease Biomarkers and Anxious-Depressive Symptoms During the COVID-19 Confinement in Cognitively Unimpaired Adults

    Get PDF
    BACKGROUND AND OBJECTIVES: Increased anxious-depressive symptomatology is observed in the preclinical stage of Alzheimer's disease (AD), which may accelerate disease progression. We investigated whether amyloid-ÎČ, cortical thickness in medial temporal lobe structures , neuroinflammation and sociodemographic factors were associated with greater anxious-depressive symptoms during the COVID-19 confinement. METHODS: This retrospective observational study included cognitively unimpaired older adults from the ALFA (Alzheimer and FAmilies) cohort, the majority with a family history of sporadic AD. Participants performed the Hospital Anxiety and Depression Scale (HADS) during the COVID-19 confinement. A subset had available retrospective (on average: 2.4 years before) HADS assessment, amyloid [18F] flutemetamol PET and structural MRI scans and CSF markers of neuroinflammation (interleukin-6 [IL-6], triggering receptor expressed on myeloid cells 2 and glial fibrillary acidic protein levels). We performed multivariable linear regression models to investigate the associations of pre-pandemic AD-related biomarkers and sociodemographic factors with HADS scores during the confinement. We further performed an analysis of covariance in order to adjust by participants' pre-pandemic anxiety-depression levels . Finally, we explored the role of stress and lifestyle changes (sleep patterns, eating, drinking, smoking habits, and medication use) on the tested associations and performed sex-stratified analyses. RESULTS: We included 921 (254 with AD biomarkers) participants. Amyloid-ÎČ positivity (B=3.73; 95%CI=1.1 to 6.36; p=.006), caregiving (B=1.37; 95%CI=0.24 to 2.5; p=.018), sex (women: B=1.95; 95%CI=1.1 to 2.79; p<.001), younger age (B=-0.12; 95%CI=-0.18 to -0.052; p<.001) and lower education (B=-0.16; 95%CI=-0.28 to -0.042; p=.008) were associated with greater anxious-depressive symptoms during the confinement. Considering pre-pandemic anxiety-depression levels, we further observed an association between lower levels of CSF IL-6 (B=-5.11; 95%CI=-10.1 to -0.13; p=.044) and greater HADS scores. The results were independent of stress-related variables and lifestyle changes. Stratified analysis revealed that the associations were mainly driven by women. DISCUSSION: Our results link AD-related pathophysiology and neuroinflammation with greater anxious-depressive symptomatology during the COVID-19-related confinement, notably in women. AD pathophysiology may increase neuropsychiatric symptomatology in response to stressors. This association may imply a worse clinical prognosis in people at risk for AD after the pandemic, and thus deserves to be considered by clinicians. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier NCT02485730

    Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex

    Get PDF
    Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-ÎČ, more advanced stages (AT) of AD pathology and APOE-Δ4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury

    Genetically predicted telomere length and Alzheimer’s disease endophenotypes: a Mendelian randomization study

    Get PDF
    Telomere length (TL) is associated with biological aging, consequently influencing the risk of age-related diseases such as Alzheimer's disease (AD). We aimed to evaluate the potential causal role of TL in AD endophenotypes (i.e., cognitive performance, N = 2233; brain age and AD-related signatures, N = 1134; and cerebrospinal fluid biomarkers (CSF) of AD and neurodegeneration, N = 304) through a Mendelian randomization (MR) analysis. Our analysis was conducted in the context of the ALFA (ALzheimer and FAmilies) study, a population of cognitively healthy individuals at risk of AD. A total of 20 single nucleotide polymorphisms associated with TL were used to determine the effect of TL on AD endophenotypes. Analyses were adjusted by age, sex, and years of education. Stratified analyses by APOE-epsilon 4 status and polygenic risk score of AD were conducted. MR analysis revealed significant associations between genetically predicted longer TL and lower levels of CSF A beta and higher levels of CSF NfL only in APOE-epsilon 4 non-carriers. Moreover, inheriting longer TL was associated with greater cortical thickness in age and AD-related brain signatures and lower levels of CSF p-tau among individuals at a high genetic predisposition to AD. Further observational analyses are warranted to better understand these associations

    Analyse structurelle surfacique de données fonctionnelles cétrébrales

    No full text
    Les images fonctionnelles par rĂ©sonance magnĂ©tique contiennent une mesure de l'activitĂ© cĂ©rĂ©brale en chaque point du cerveau. Si de nombreuses mĂ©thodes existent, l'analyse automatique de ces donnĂ©es reste un problĂšme ouvert. Notamment, la trĂšs grande majoritĂ© des mĂ©thodes considĂšre ces donnĂ©es de façon volumique, dans le domaine 3D d'acquisition. Pourtant, l'essentiel de l'activitĂ© a lieu dans le cortex, qui peut ĂȘtre considĂ©rĂ© comme une surface. ConsidĂ©rer les donnĂ©es sur la surface corticale prĂ©sente beaucoup d'avantages : d'une part sa gĂ©omĂ©trie peut ĂȘtre prise en compte dans toutes les Ă©tapes de traitement, d'autre part la prise en compte de l'ensemble du volume rĂ©duit le pouvoir de dĂ©tection des tests statistiques gĂ©nĂ©ralement employĂ©s. Cette thĂšse propose ainsi une extension du champ d'application des mĂ©thodes volumiques vers le domaine surfacique en abordant la projection des donnĂ©es sur la surface, l'analyse multi-sujets ainsi que l'estimation de la validitĂ© des rĂ©sultats.AIX-MARSEILLE3-BU Sc.St JĂ©rĂŽ (130552102) / SudocSudocFranceF
    • 

    corecore