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ABSTRACT (150 words) 57 
 58 
Brain-age can be inferred from structural neuroimaging and compared to chronological 59 
age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been 60 
found in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation 61 
against markers of neurodegeneration and AD is lacking. Here, imaging-derived 62 
measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 63 
2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive 64 
impaired (MCI) patients from four independent cohorts with available biomarker data: 65 
ALFA+, ADNI, EPAD and OASIS. Brain-age delta was associated with abnormal 66 
amyloid-b, more advanced stages (AT) of AD pathology and APOE-e4 status. Brain-age 67 
delta was positively associated with plasma neurofilament light, a marker of 68 
neurodegeneration, and sex differences in the brain effects of this marker were found. 69 
These results validate brain-age delta as a non-invasive marker of biological brain aging 70 
related to markers of AD and neurodegeneration. 71 
 72 
 73 
INTRODUCTION 74 
 75 
Age is the main risk factor for Alzheimer’s Disease (AD) and most neurodegenerative 76 
diseases. However, the mechanisms underlying this association are still poorly 77 
understoodd (Fjell et al., 2014). Both normal aging and AD are associated with region-78 
specific cerebral morphological changes characterized by the occurrence of atrophy 79 
(Bakkour et al., 2013; Fjell et al., 2014). Both aging and AD have differential and partially 80 
overlapping effects on specific regions of the cerebral cortex like, for instance, the 81 
dorsolateral prefrontal cortex (Bakkour et al., 2013; Fjell et al., 2014; Pichet Binette et 82 
al., 2020). Conversely, some regions are predominantly affected by age (e.g., calcarine 83 
cortex) and some others are predominantly affected by AD (e.g., medial temporal cortex) 84 
(Bakkour et al., 2013). A better understanding of the mechanistic links between the brain 85 
aging process and neurodegenerative diseases is an urgent priority to develop effective 86 
strategies to deal with their rising burden amid an ageing population (Franke & Gaser, 87 
2019). Therefore, a growing amount of research is focusing on using neuroimaging 88 
techniques to develop a biomarker of biological brain aging.  In this framework, the 89 
concept of brain-age has emerged as an appealing comprehensive marker that enables 90 
determining on an individual basis, the risk for age-associated brain diseases (James H. 91 
Cole et al., 2017; James H. Cole & Franke, 2017; Franke et al., 2010; Franke & Gaser, 92 
2019). However, this is a challenging task because, even though the cerebral structural 93 
changes related to aging are well established, the older population is characterized by 94 
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substantial variation in neurobiological aging trajectories (J. H. Cole et al., 2018; Fjell et 95 
al., 2014). 96 
 97 
Recently, machine learning techniques have gained popularity as brain-age prediction 98 
models (James H. Cole et al., 2017; Dafflon et al., 2020; de Lange et al., 2019; Franke & 99 
Gaser, 2019), due to their ability in identifying relevant data-driven patterns within 100 
complex data (Zhavoronkov et al., 2019). These models learn the association between 101 
chronological age and cerebral morphological features derived from structural magnetic 102 
resonance imaging (MRI) in healthy individuals, yielding a predicted brain-age for each 103 
individual. Individuals with a predicted brain-age higher than their chronological age may 104 
have an “older” brain than expected, whereas an individual with an estimated brain-age 105 
lower than their chronological age has a “younger” brain. Subtracting chronological age 106 
from estimated brain-age hence provides an estimate of accelerated brain aging, namely 107 
the brain-age delta. Recent literature has shown the adequacy of using a brain-age 108 
predicted measurement in the assessment of the clinical severity of AD, by finding higher 109 
brain-age deltas in AD and individuals with mild cognitive impairment (MCI) with 110 
respect to cognitively unimpaired (CU) individuals (Beheshti et al., 2018; Kaufmann et 111 
al., 2019). A higher brain-age delta has also been reported in other diseases, such 112 
as  multiple sclerosis, epilepsy and psychiatric disorders, with respect to healthy controls 113 
(Beheshti et al., 2018; Kaufmann et al., 2019). In addition, brain-age delta has also been 114 
associated with other biological measures such as: lifestyle factors (James H. Cole, 2020), 115 
cognition (Beheshti et al., 2018; James H. Cole, 2020) hypertension (de Lange, et al., 116 
2020) and prediction of mortality (J. H. Cole et al., 2018).  117 
 118 
Even though these studies support the association of brain-age delta as a biomarker of 119 
biological aging with relevance to various brain diseases, there are no comprehensive 120 
studies validating this measurement in association with specific biological markers of AD 121 
pathology (i.e. Amyloid-b	 [Ab] and tau pathology), neurodegeneration and 122 
cerebrovascular disease. This is a very relevant aspect since the recent AD research 123 
framework criteria defines AD as a biological construct, namely the presence of both 124 
abnormal Ab (A+) and tau (T+) biomarkers, regardless of clinical manifestations(Jack et 125 
al., 2018). The term “Alzheimer’s pathological change” is proposed whenever there is 126 
evidence of Ab but not tau pathology (A+T-). The umbrella term “Alzheimer’s 127 
continuum” includes both “Alzheimer’s pathological change” (A+T-) and “Alzheimer’s 128 
Disease” (A+T+). Under this definition, A-T+ individuals would not fall into the AD 129 
continuum. Then, under this framework, neurodegeneration biomarkers (N) and cognitive 130 
status (i.e. CU, MCI and dementia syndromes) are used to stage disease progression. 131 
 132 
A recent study used brain-age measurements to identify amnestic MCI (aMCI), the 133 
typical clinical presentation of prodromal AD, from other individuals with MCI, by 134 
studying the association with AD risk factors such as apolipoprotein E (APOE)  and 135 
Ab(Huang et al., 2021). Another study focusing on the impact of training the brain-age 136 
prediction model in individuals with Ab	 pathology	 (A.+) showed that CU A.+ 137 
individuals had a higher brain-age delta than CU A.- individuals (Ly et al., 2020). 138 
Nonetheless, there remains a need to study the associations between brain-age prediction 139 
and AD as well as neurodegeneration biomarkers in preclinical stages in different and 140 
independent cohorts and in a larger sample size.  Moreover, given that female individuals 141 
have a higher AD prevalence compared to males (Nebel et al., 2018) and display different 142 
lifetime trajectories in the brain morphological features (Gennatas et al., 2017), it is of 143 
interest to determine the effect of sex on brain age delta and its interaction with AD 144 
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biomarkers. Literature describes sex differences in AD biomarkers, such as that females 145 
with abnormal A. who are APOE-e4 carriers show greater subsequent increase in 146 
cerebrospinal fluid (CSF) tau than their male counterparts (Buckley et al., 2019), or that 147 
females with higher A. burden show higher entorhinal cortical tau than their male 148 
counterparts (Buckley et al., 2019). Conversely, levels of the neurodegeneration 149 
biomarker CSF neurofilament light (NfL) have been widely reported to be higher in males 150 
than in females (Mielke, 2020; Milà-Alomà et al., 2020). In line	with	this,	AD risk factors 151 
are associated with greater brain aging in women than men (Subramaniapillai et al., 152 
2021). 153 
 154 
Therefore, in the present study, we aim to validate brain-age delta as a clinically relevant 155 
marker related to markers of AD and neurodegeneration. For this purpose, we determine 156 
the association between the predicted structural brain-age delta with biomarkers and risk 157 
factors for AD and neurodegeneration in non-demented individuals, as well as to study 158 
the effect of sex on these associations. We trained a model to predict the brain-age 159 
separately for females and males, using machine learning on imaging-derived measures 160 
of cortical thickness, cortical volume, and subcortical volume from the UK BioBank 161 
cohort (N=22,661). Using this model, we then estimated brain-age in four independent 162 
cohorts: ALFA+ (N=380), ADNI (N=719), EPAD (N=808) and OASIS (N=407). In each 163 
cohort, we studied the associations of brain-age delta with biomarkers of AD pathology 164 
(CSF Ab and p-tau as continuous values, as well as categorized in AT stages), the APOE-165 
e4 genotype which is the main genetic risk factor for AD, neurodegeneration (CSF and 166 
plasma NfL), and small vessel disease (White Matter Hyperintensities [WMH]). Finally, 167 
we studied the sex differences in brain age prediction and the sex effects with these 168 
biomarkers on brain-age delta. 169 
 170 
 171 
RESULTS  172 

 173 
Participants’ Characteristics  174 

 175 
Table 1 summarizes the demographic characteristics of the cohorts included in the study. 176 
ADNI and EPAD cohorts included both CU and MCI individuals, while the UK BioBank, 177 
ALFA+ and OASIS cohorts only included CU individuals. Table 2 summarizes the 178 
variables used to study the associations with brain-age delta, which included biomarkers 179 
for AD (A. positron emission tomography [PET] and CSF Ab and p-tau), 180 
neurodegeneration (CSF and plasma NfL), and cerebrovascular pathology (WMH on 181 
MRI), as well as the aging signature composite(Bakkour et al., 2013), both cross-sectional 182 
and longitudinally. The aging signature composite is a map of specific brain regions that 183 
undergo cortical thinning in normal aging, which has been used as a proxy measurement 184 
for brain aging. These validation variables were correlated with chronological age for all 185 
cohorts (see Supplementary Table 1). Some of the participants for ALFA+ (N=25), ADNI 186 
(N=116) and EPAD (N=71) fell into the A-T+ group, corresponding to non-AD 187 
pathologic change. Since our aim was to specifically validate the brain-age delta 188 
measurements in the AD continuum, we excluded these participants from subsequent 189 
analyses; and they are reported within Table 1 and Table 2 solely for descriptive purposes. 190 
In addition, the number of MCI individuals with available data of CSF NfL and of aging 191 
signature change was relatively low and, therefore, these variables were excluded from 192 
the analysis in MCI individuals. 193 
 194 
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Table 1.  Sample demographics and characteristics separated by cohort and by 
diagnosis. 
 

CU MCI 

Characteristics  
UK 

BioBank ALFA+ ADNI EPAD OASIS ADNI EPAD 

(n=22,661) (n=380) (n=284) (n=653) (n=407) (n=435) (n=155) 

Age, years 64.54 (7.55) 60.61 (4.72) 71.42 (6.36) 64.96 (7.01) 69.07 (9.42) 71.09 (7.31) 69.08 (6.97) 

Age range, 
years [44, 81] [48, 73] [55, 89] [50, 88] [42, 89] [55, 91] [52, 88] 

Female, n (%) 11,767 
(51.92) 254 (60.76) 126 (50.00) 386 (59.11) 244 (59.95) 249 (50.00) 81 (47.74) 

Education, 
years 17.75 (5.42) 13.43 (3.71) 16.54 (2.49) 14.83 (3.56) 15.93 (2.59) 16.23 (2.71) 14.17 (3.77) 

APOE-!4 
carriers, n (%) 6,334 (27.95) 221 (52.87) 72 (28.57) 217 (33.23) 118 (28.99) 218 (43.78) 60 (38.71) 

MMSE - 29.15 (0.95) 28.985 (1.24) 28.82 (1.40) 29.03 (1.31) 27.57 (2.19) 27.86 (1.97) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195 

Notes: Data are expressed as mean (M) and standard deviation (SD) or percentage (%), as appropriate. 
Abbreviations: APOE, apolipoprotein E; MMSE, Mini-Mental State Examination. 
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Table 2.  Biomarkers separated by cohort and by diagnosis 
 

 
CU MCI 

ALFA+ ADNI EPAD OASIS ADNI EPAD 

BIOMARKERS N Mean 
(SD) N Mean 

(SD) N Mean 
(SD) N Mean 

(SD) N Mean 
(SD) N Mean 

(SD) 

Centiloids   0 -  0   - 0  -  407 13.468 
(28.138) 0  -  0  -  

CSF A542 
(pg/mL) a 380 1318.059 

(599.223) 284 1223.890 
(556.648) 653 1403.617 

(681.736) 0  - 435 986.248 
(446.402) 155 1245.181 

(741.756) 
CSF p-tau 
(pg/mL) 380 16.289 

(7.813) 283 22.234 
(9.692) 627 18.326 

(8.380) 0 - 434 26.490 
(14.402) 151 24.715 

(14.897) 
CSF NfL 
(pg/mL) b 380 82.717 

(29.124) 26 1052.444 
(376.095)  0 - 0 - 48 1383.638 

(918.231) 0 - 

Plasma NfL 
(pg/mL) 368 10.519 

(3.739) 184 35.843 
(17.988) 0 - 0 - 404 38.157 

(18.908) 0 - 

WMH volume 360 0.045 
(0.845) 240 -0.0085 

(1.267) 456 0.038 
(1.072) 0 - 458 -0.005 

(1.229) 108 0.048 
(1.076) 

Aging signature 
b 360 2.387 

(0.071) 240 2.284 
(0.105) 456  0 - 458 2.251 

(0.109) 0 - 

Aging signature 
V2 b 187 2.376 

(0.072) 45 2.299 
(0.118) 0 - 0 - 46 2.257 

(0.119) 0 - 

Aging signature 
change 
(67 − 69 D	:; ) b 

187 -0.003 
(0.011) 45 -0.0007 

(0.037) 0 - 0 - 46 -0.003 
(0.050) 0 - 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Notes: Data are expressed as mean (M) and standard deviation (SD) or percentage (%), as appropriate.  
Amyloid-b status was defined by CSF (ALFA+, ADNI and EPAD) or amyloid PET (OASIS).  
For ALFA+ and ADNI, we calculated the aging signature from MRI scans acquired 3 years later than the 
original MRI scan, called aging signature V2. Aging signature change was calculated as the difference in aging 
signature over these two MRI scans.  
 

a Individuals that fell into the A-T+ group: 25 from ALFA+, 116 from ADNI and 71 from EPAD. 
b As the number of MCI individuals with CSF NfL and aging signature change was relatively low, we 
excluded them from the following results. 
Abbreviations: CSF, cerebrospinal fluid; NfL, neurofilament light; WMH, White Matter Hyperintensities. 
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Brain-Age Prediction and Chronological Age 196 
 197 
We trained the prediction model using the UK BioBank cohort and tested the model using 198 
four independent cohorts (ALFA+, ADNI, EPAD and OASIS), as shown 199 
in Supplementary Fig. 1. Table 3 shows the prediction accuracy before and after age-bias 200 
correction for the combined female and male predictions. The average prediction 201 
accuracy of the model run on UK BioBank using ten-fold cross-validation as measured 202 
by the mean absolute error (MAE) and by Pearson’s correlation were, originally, 203 
MAE=4.19 and R=0.71 and, after correction, MAE=2.95 and R=0.89 (Table 3 204 
and Supplementary Fig. 2).  205 
 206 
We then investigated the association of predicted brain-age with chronological age on 207 
each of the independent cohorts. All the cohorts showed a similar positive correlation and 208 
fitting performance metrics as measured by the mean absolute error (MAE), R and root 209 
mean squared error (RMSE) between chronological age and predicted brain-age. 210 
Correlation coefficients were not different between cohorts (P>0.05, for all comparisons, 211 
see Supplementary Table 2). As an example, after bias correction, the highest numerical 212 
difference was between ALFA+ and OASIS, with quite similar MAE=3.25 and R=0.729 213 
and MAE=3.81 and R=0.910, respectively.  214 
 215 
In order to study the effect of sex on brain age prediction, we also computed the 216 
performance metrics stratified by females and males (Supplementary Table 3 and 4). 217 
Correlations and fitting performance metrics were not significantly different between 218 
females and males (Pearson’s r (William’s test), P>0.05; RMSE (F-test) P>0.05), see 219 
Supplementary Table 5. Plots of the correlations between predicted brain-age and 220 
chronological age for females and males in each of the cohorts can be seen in 221 
the Supplementary Fig. 3.  222 
 223 
Table 3. Prediction metrics for all independent cohorts. 

Cohorts Correlation with age MAE (y) R2 RMSE 
 R P-value    

Before bias correction 

UK BioBank 0.712 
(0.007) <0.001 4.19 (0.07) 0.51 

(0.03) 5.25 (0.08) 

ALFA+ 0.448 <0.001 4.31 0.20 4.18 
ADNI 0.587 <0.001 7.21 0.34 5.47 
EPAD 0.629 <0.001 4.63 0.40 5.62 
OASIS 0.733 <0.001 6.99 0.54 6.42 

After bias correction 

UK BioBank 0.898 
(0.004) <0.001 2.95 (0.10) 0.89 

(0.01) 3.29 (0.10) 

ALFA+ 0.729 <0.001 3.25 0.53 3.99 
ADNI 0.807 <0.001 4.47 0.65 5.47 
EPAD 0.847 <0.001 3.29 0.72 4.07 
OASIS 0.910 <0.001 3.81 0.82 4.83 

 
 
 
 

The Pearson’s correlation coefficient (R) between predicted brain-age and 
chronological age, R2, root mean square error (RMSE), and mean absolute error 
(MAE) for UKBiobank and for each of the independent cohorts before and after bias 
correction. Age bias (Pearson’s correlation between brain-age delta and 
chronological age) is also computed. For UKBiobank, the metrics, given as mean 
(standard deviation) are computed from 10-fold cross validation with 10 repetitions 
per fold. 
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Brain Regions Associated with Aging 224 
 225 

We computed the SHapley Additive exPlanation (SHAP) values, which reflect the 226 
marginal contribution of each brain region to the brain-age prediction, using the 227 
UKBioBank dataset. SHAP values interpret the impact in the prediction of the values of 228 
volume or cortical thickness for a given brain region. In other words, they reflect the most 229 
important features that consistently influenced the prediction of brain-age and whether 230 
the decrease or increase of each region impacted into predicting a higher or lower brain-231 
age. The SHAP values were computed separately for females and males. We compared 232 
the regions with higher SHAP values for females and males, and vice-versa, by averaging 233 
the SHAP values within each sex separately and then subtracting the mean SHAP of 234 
males to the mean SHAP of females. 235 
 236 
There were regions whose SHAP values were high in both females and males, including 237 
the volumes of the amygdala, nucleus accumbens, cerebellar white matter, lateral 238 
ventricles and the insula, as well as the cortical thickness of the superior-temporal cortex. 239 
All the brain regions with consistent highest SHAP values for females and males are 240 
shown in Fig. 1a-b, as well as the effect of each region (larger or lower value) on 241 
predicting a higher brain-age. Conversely, the thickness of regions such as the transverse 242 
temporal cortex, the pars triangularis, the inferior parietal cortex and the left frontal pole 243 
thickness, as well as the volume of the left entorhinal cortex had higher SHAP values in 244 
females than in males, while the opposite occurred with the thickness of the left isthmus 245 
cingulate and the right cuneus and the cortical volume of the superior frontal and right 246 
rostral middle regions (Fig. 1c). 247 
 248 
In Fig. 1d we can see the aging trajectories of three regions whose SHAP values were 249 
different for females and males. For example, the bi-lateral superior frontal volumes 250 
decreased more over the years within males than females. This result was seen as the 251 
interaction of sex with age (Pinteratcion<0.001). We also found an interaction effect of sex 252 
and age for the isthmus cingulate thickness (Pinteratcion<0.001), by which the thickness of 253 
males decreased more over the years than from the females. On the contrary, we also 254 
found regions, such as the middle temporal thickness, which followed the same trajectory 255 
over time for both sexes (Pinteraction=0.671), but which was lower for females than for 256 
males (P<0.001). 257 
 258 
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Figure 1. Significant SHAP-selected brain regions most important in prediction for a 
females and b males separately. Significance was studied by assessing the stability of the 
region’s importance by performing subsampling of data over 1,000 permutations. 
Colored regions had a p-value<0.05 corrected for multiple comparisons using Bonferroni 
correction approach. Regions in red show larger volume or cortical thickness, while 
regions in blue show lower volume or cortical thickness. In c, the difference between the 
SHAP values of the significant SHAP-selected regions for females and males. In green, 
higher values for females and in red, higher for males. In d, examples of different aging 
trajectories for females and males of different significant SHAP-selected regions. For 
visualization purposes, nonparametric smoothing spline functions were used to fit the 
data. 
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Associations with AD biomarkers and risk factors  259 
 260 
We studied the association between brain-age delta and AD biomarker classifications (Ab 261 
status, AT stages) and APOE-e4 status in all the independent cohorts pooled together, 262 
with a linear model adjusting for the effect of age and sex (Figure 2 and Table 4). Ab 263 
status was defined by CSF (ALFA+, ADNI and EPAD) or amyloid PET (OASIS) using 264 
pre-established cut-off values (Hansson et al., 2018; Milà-Alomà et al., 2020; Salvadó et 265 
al., 2019; Schindler et al., 2018). Brain-age delta was higher in MCI with respect to CU 266 
individuals (P<0.001). In both CU and MCI, a higher brain-age delta was significantly 267 
associated with abnormal Ab status (CU: P<0.001 and MCI: P<0.001) and with 268 
progressive AT stages (CU: P<0.001 and MCI: P<0.001) (see Table 4 and Supplementary 269 
Table 6 for more details). The mean brain-age delta values for the different Ab status and 270 
AT stages can be found in Supplementary Table 7. The brain-age effect on AT stages was 271 
progressive, as that of the A+T- group was larger than that of A-T-, while the brain-age 272 
delta of A+T+ was larger than those of the other two previous stages (Table 4 and Fig 273 
2a). Brain-age delta was also significantly associated with APOE status (CU: P<0.001 274 
and MCI: P=0.029). In particular, APOE-e4 carriers had larger brain-age deltas (i.e., 275 
older-appearing brains than expected for their chronological age) compared to APOE-e33 276 
individuals for both CU (b=0.105, P=0.032) and MCI (b=0.266, P=0.005) (see Table 4 277 
and Figure 2). The mean brain-age delta values for the different APOE status can be found 278 
in Supplementary Table 7.  These results were consistent with the results from the within-279 
cohort analyses (see Supplementary Table 8).  280 
 281 
We next studied the association between brain-age delta and AD biomarkers and risk 282 
factors stratified by sex (Table 5). In general, the same associations found with the whole 283 
sample was seen for females and males separately. However, although a higher brain-age 284 
delta was significantly associated with progressive AT stages both for females (CU: 285 
P<0.001 and MCI: P<0.001) and males (CU: P=0.009 and MCI: P<0.001), brain-age 286 
delta of A+T+ was significantly larger than those of the other two previous stages (A-T- 287 
and A+T-) in CU females (b=0.431, P=0.001) but not in CU males (b=0.139, P=0.364). 288 
We conducted regression analyses to test the interaction effect of sex and AT stages on 289 
CU brain-age delta. Although we found a trend by which the proportion of A+T+ with 290 
larger brain-age delta was larger in females than in males, the interaction effect was not 291 
significant (Pinteraction=0.071). 292 
 293 
 294 
 295 
 296 
 297 
 298 
 299 
 300 
 301 
 302 
 303 
 304 
 305 
 306 
 307 
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Figure 2. In a and b, the standardized associations (.± 95% CI) between measures of 
brain-age delta validation variables for a) CU individuals and b) MCI individuals. 
Variables include AD biomarkers and risk factors: amyloid-5 status, AT stages and 
APOE status; and neurodegeneration markers (available in ALFA+ and ADNI): CSF 
NfL, plasma NfL and aging signature change. The analyses included age and sex as 
covariates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308 
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Table 4.  Relationships between validation variables and brain-age delta for all CU 
and MCI individuals. 

Model ! SE P-Value [0.025 0.975] N Effect size 
CU Individuals 

Amyloid-! 
pathology (ref: A-) 

0.233 0.047 <0.001 0.140 0.325 1,634 0.222 

Amyloid-! 
/ Tau 

pathology 
(ref: A-T-) 

A+T- 0.2023 0.059 0.001 0.087 0.318 

1,162 

0.205 

A+T+ 0.310 0.096 0.001 0.122 0.498 0.311 

APOE 
status 
(ref: 

APOE-e33 

APOE-
e2 

-0.081 0.077 0.295 -0.232 0.070 

1,634 

0.079 

APOE-
e4 

0.105 0.049 0.032 0.008 0.201 0.100 

APOE-
e24 

-0.051 0.136 0.795 -0.317 0.216 0.033 

WMH volume † 0.171 0.030 <0.001 0.111 0.231 972 0.033 
CSF NfL ‡ 0.077 0.049 0.122 -0.021 0.173 378 0.006 

Plasma NfL ‡ 0.142 0.045 0.002 0.054 0.229 508 0.020 
Brain Atrophy ‡ 0.014 0.056 0.799 -0.096 0.124 152 0.000 

Aging signature V1 
‡ 

-0.366 0.053 <0.001 -0.471 -0.261 152 0.175 

Aging signature V2 
‡ 

-0.302 0.053 <0.001 
-0.407 -0.198 152 0.120 

MCI Individuals 
Amyloid-! 
pathology 

0.640 0.089 <0.001 
0.465 0.816 218 0.665 

Amyloid-! 
/ Tau 

pathology 
(ref: A-T-) 

A+T- 0.550 0.109 <0.001 0.334  0.765 

218 

0.581 

A+T+ 
0.7245 0.107 

<0.001 
0.523  0.926 

0.722 

APOE 
status 
(ref: 

APOE-e33 

APOE-
e2 

-0.036 0.168 0.829 
-0.367 0.294 

218 

0.036 

APOE-
e4 

0.266 0.093 0.005 0.083 0.450 0.272 

APOE-
e24 

0.372 0.319 0.244 -0.255 1.000 0.349 

WMH volume 0.222 0.054 <0.001 0.117 0.327 191 0.040 
Plasma NfL ¦ 0.242 0.067 <0.001 0.110 0.374 134 0.043 

 
 
 
 
 
 
 
 
 
 
 
 
 309 

Notes: Relationships between validation variables and Brain-Age delta from all CU pooled subjects 
(including ALFA+, ADNI, EPAD and OASIS) and all MCI pooled subjects (including ADNI and 
EPAD).  Results given by the linear model: brain-age delta ~ each variable + chronological age + sex. 
The regression coefficients (β), standard errors (SE), P-value, 95% Confidence Interval, number of 
individuals (N) and effect size are depicted for each variable. 
Significant values (P<0.05) are marked in bold. 
Effect size in categorical variables was calculated as Cohen’s D, while Cohens f2 was calculated for 
continuous measurements. Amyloid-b status was defined by CSF (ALFA+, ADNI and EPAD) or 
amyloid PET (OASIS). MCI individuals only contained individuals from ADNI and EPAD. 
† Contains data from ALFA+, ADNI and EPAD. 
‡ Contains data from ALFA+ and ADNI. 
¦ Contains data from ADNI. 
Abbreviations:  APOE, apolipoprotein E; WMH, White Matter Hyperintensities; CSF, cerebrospinal 
fluid; NfL, neurofilament light; ref, reference. 
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Associations with neurodegeneration biomarkers 310 
 311 
We next tested the associations between brain-age delta and neurodegeneration 312 
biomarkers (Fig. 2 and Table 4). CSF NfL, plasma NfL and longitudinal change of the 313 
aging signature were available in ALFA+ and ADNI. The positive associations between 314 
brain-age deltas and plasma NfL were significant within the CU (b=0.142, P=0.002) and 315 
MCI individuals (b=242, P<0.001). CSF NfL was not significantly associated with brain-316 
age delta (b=0.077, P=0.122). The aging signature composite at both visits was 317 
negatively associated with brain-age delta (Visit 1: b=-0.366, P<0.001 and Visit 2: b=-318 
0.302, P<0.001). That is, larger brain-age delta was associated with reduced cortical 319 
thickness in aging-vulnerable regions. However, the association between the longitudinal 320 
change in the aging signature and brain-age delta was not statistically significant 321 
(b=0.014, P=0.799). 322 
 323 
We next studied the association between brain-age delta and neurodegeneration 324 
biomarkers stratified by sex (Table 5). The associations between brain-age delta and CSF 325 
NfL were significant within the CU females (b=0.131, P=0.042), but not within the CU 326 
males (b=-0.004, P=0.959). However, the interaction effect of sex and CSF NfL on CU 327 
brain-age delta (Fig. 3a) did not reach significance (Pinteraction=0.170). In the same line, 328 
the associations between brain-age delta and plasma NfL were significant within the CU 329 
and MCI females (CU: b=0.193, P=0.001 and MCI: b=0.342, P=0.001), but not within 330 
the males (CU: b=0.079, P=0.254 and MCI: b=0.157, P=0.086). The interaction effect of 331 
sex and plasma NfL on brain-age delta (Fig. 3a) revealed a trend within CU individuals, 332 
by which, although not significant, plasma NfL was larger on females when the brain-age 333 
delta showed larger values (older-appearing brain) than in males (CU: Pinteraction=0.092 334 
and MCI: Pinteraction=0.194). 335 
 336 
In addition, we tested for the interaction effect of age and these biomarkers on brain-age 337 
delta. We found a significant interaction effect of age and CSF NfL on CU brain-age delta 338 
(Pinteraction< 0.001) within the CU individuals (Fig 4a), by which the measures of CSF NfL 339 
were higher with age and with larger brain-age deltas (older-appearing brain). When 340 
stratifying by sex, this interaction effect of age was seen in females (Pinteraction< 0.001), 341 
but not in males (Pinteraction=0.241). Regarding plasma NfL (Fig. 4b), although we found 342 
a similar trend by which the measures of plasma NfL were higher with age and with larger 343 
brain-age deltas for CU and MCI individuals, the interaction effects were not significant 344 
(CU: Pinteraction=0.136 and MCI: Pinteraction=0.145). When stratifying by sex, this 345 
interaction effect of age was seen in CU females (Pinteraction<0.016) and not in CU males 346 
(Pinteraction=0.656). On the contrary, this interaction effect of age and plasma NfL on brain-347 
age delta was seen in MCI males (Pinteraction<0.017) and not in MCI females 348 
(Pinteraction=0.621). 349 
 350 
 351 

Associations with markers of cerebrovascular disease 352 
 353 

We lastly tested the associations between brain-age delta and markers of cerebrovascular 354 
disease WMH; WMH data were available in ALFA+, ADNI and EPAD. In both CU and 355 
MCI, brain-age delta was significantly associated with WMH (CU: b=0.171, P<0.001 356 
and MCI: b=0.222, P<0.001) (see Table 4). These results were consistent with the results 357 
from the within-cohort analyses (see Supplementary Table 7).  358 
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 359 
When studying the association between brain-age delta and WMH stratified by sex (Table 360 
5) we found that the brain-age delta was positively associated with WMH both in CU 361 
females (b=0.202, P<0.001) and CU males (b=0.132, P=0.007). The interaction effect of 362 
sex and WMH on CU brain-age delta (Fig. 3a) was not significant (Pinteraction=0.182). 363 
Conversely, we found that the brain-age delta was positively associated with WMH MCI 364 
males (b=0.154, P<0.001), but not in females (b=0.140, P=0.100). The interaction effect 365 
of sex and WMH on MCI brain-age delta (Fig. 3b) was also not significant 366 
(Pinteraction=0.112). 367 
 368 
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Table 5.  Relationships between validation variables and brain-age delta st ratified by sex for all CU and MCI individuals. 

 

 Females Males 
Model ! SE P-Value N Effect size ! SE P-Value N Effect size 

CU Individuals 
Amyloid-! pathology 

(ref: A-) 0.224 0.063 <0.001 966 0.226 0.2434 0.072 0.001 668 0.246 

Amyloid-! / 
Tau 

pathology 
(ref: A-T-) 

A+T- 0.197 0.078 0.012 

688 

0.191 0.206 0.091 0.024 

474 

0.208 

A+T+ 0.431 0.123 0.001 0.425 0.139 0.154 0.367 0.142 

APOE 
status (ref: 
APOE-e33 

APOE-e2 -0.1301 0.104 0.211 
966 

0.128 -0.019 0.115 0.869 
668 

0.018 
APOE-e4 0.081 0.064 0.203 0.080 0.130 0.079 0.098 0.122 
APOE-e24 -0.001 0.187 0.998 0.001 -0.126 0.200 0.532 0.117 

WMH volume † 0.202 0.039 <0.001 580 0.046 0.132 0.049 0.007 392 0.019 
CSF NfL ¥ 0.131 0.064 0.042 228 0.019 -0.004 0.078 0.959 150 0.000 

Plasma NfL ‡ 0.1923 0.059 0.001 298 0.037 0.079 0.069 0.254 210 0.006 
Brain Atrophy ‡ 0.073 0.074 0.328 171 0.005 -0.074 0.087 0.400 102 0.007 

Aging signature V1 ‡ -0.410 0.067 <0.001 171 0.223 -0.301 0.092 0.001 102 0.109 
Aging signature V2 ‡ -0.356 0.069 <0.001 171 0.159 -0.229 0.085 0.009 102 0.072 

MCI Individuals 
Amyloid-! pathology 0.714 0.130 <0.001 217 0.752 0.5612 0.124 <0.001 286 0.578 

Amyloid-! / 
Tau 

pathology 
(ref: A-T-) 

A+T- 0.558 0.175 0.002 

214 

0.576 0.509 0.175 <0.001 

284 

0.529 

A+T+ 0.8156 0.146 <0.001 0.818 0.626 0.145 <0.001 0.626 

APOE 
status (ref: 
APOE-e33 

APOE-e2 0.006 0.295 0.984 
217 

0.006 -0.044 0.209 0.834 
286 

0.041 
APOE-e4 0.270 0.142 0.06 0.283 0.259 0.126 0.041 0.259 
APOE-e24 0.3278 0.418 0.435 0.348 0.415 0.812 0.417 0.406 

WMH volume 0.140 0.085 0.100 181 0.154 0.291 0.070 <0.001 252 0.069 
Plasma NfL¦ 0.342 0.098 0.001 128 0.097 0.157 0.091 0.086 173 0.017 

Notes: Relationships between validation variables and Brain-Age delta from all CU pooled subjects (including ALFA+, ADNI, EPAD and OASIS) and all MCI 

pooled subjects (including ADNI and EPAD).  Results given by the linear model: brain-age delta ~ each variable + chronological age + sex. The standardized 

regression coefficients (β), standard errors (SE), P-value, 95% Confidence Interval, number of individuals (N) and effect size are depicted for each variable. 

Significant values (P<0.05) are marked in bold. Effect size in categorical variables was calculated as Cohen’s D, while Cohens f2 was calculated for continuous 

measurements. Amyloid-b status was defined by CSF (ALFA+, ADNI and EPAD) or amyloid PET (OASIS). 

† Contains data from ALFA+, ADNI and EPAD. 

‡ Contains data from ALFA+ and ADNI. 

¦ Contains data from ADNI. 

Abbreviations:  APOE, apolipoprotein E; WMH, White Matter Hyperintensities; CSF, cerebrospinal fluid; NfL, neurofilament light; ref, reference. 
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Figure 3. In a and b, the associations of brain-age delta and validation variables stratified 
by sex for a) CU individuals and b) MCI individuals. Scatter plots representing the 
associations of CSF NfL, plasma NfL and WMH with brain-age delta in females (green) 
and males (red). Each point depicts the value of the validation bioamarkers of an 
individual and the solid lines indicate the regression line for each of the groups. The 
standardized regression coefficients (β) and the P-values are shown and were computed 
using a linear model adjusting for age and sex. Additionally, we also computed the “brain-
age delta x sex” interaction term. 
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Figure 4. The associations of brain-age delta and a CSF NfL and b plasma NfL for all 
CU and, when available, MCI individuals. Scatter plots representing the associations of 
CSF NfL, plasma NfL and WMH with age in accelerated brain aging (purple) and 
decelerated brain aging (green). Each point depicts the value of the validation 
bioamarkers of an individual and the solid lines indicate the regression line for each of 
the groups. The regression coefficients (β) and the P-values are shown and were 
computed using a linear model adjusting for age and sex. Additionally, we also computed 
the “brain-age delta x sex” interaction term. 
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DISCUSSION 1 
 2 

In this study, we show that, in non-demented individuals, the predicted brain-age delta is 3 
associated with specific AD biomarkers (amyloid-! PET, CSF Ab42 and CSF pTau) and 4 
risk factors (APOE genotype), as well as with unspecific neurodegeneration biomarkers 5 
(plasma NfL), and markers of cerebrovascular disease (WMH volume). Our results also 6 
indicate that there are sex differences in the development of brain aging trajectories. 7 
Taken together, our findings validate the use of machine learning predicted brain-age 8 
deltas as biomarkers of brain aging and AD pathology.  9 
 10 
We have studied, to our knowledge for the first time, the associations between brain-age 11 
delta and different biomarkers of AD pathology and neurodegeneration in CU 12 
individuals. We are aware of the complexity of disentangling the effects of aging and 13 
pathology in brain aging. In this work, we do not aim to disentangle to what extent the 14 
brain structural differences are caused by AD pathology (as measured by the biomarkers 15 
that we study) or aging. Here, we show that an unspecific estimation of biological brain 16 
aging, agnostic of the underlying mechanisms is associated with the specific biological 17 
process of AD.  18 
 19 
Regarding the associations with AD biomarkers and risk factors, regression analyses 20 
revealed significant positive associations of brain-age delta with increased Ab pathology 21 
and with AT stages for CU and MCI individuals. We also found significant associations 22 
with APOE status in the CU and MCI individuals, in which larger brain-age deltas were 23 
associated with the presence of APOE-e4 allele. This result is in line with previous 24 
literature that has shown that APOE-e4 carriership may accelerate AD-related brain 25 
atrophy (Evans et al., 2014; Filippini et al., 2011), as accelerated brain aging has also 26 
been found in MCI and AD patients (Beheshti et al., 2018; Kaufmann et al., 2019). The 27 
association of brain-age delta with APOE-e4 was also previously studied, for which 28 
significant associations were found in MCI individuals (J. H. Cole et al., 2018; Löwe et 29 
al., 2016). Taken together, our results advocate for an effect of APOE-e4 in physiological 30 
brain aging, albeit of a lesser magnitude than when AD pathology is present. These results 31 
with AD biomarkers and risk factors were highly reproducible in within-cohort analyses. 32 
 33 
With the aim of studying the associations between brain-age delta and neurodegeneration, 34 
we computed the associations with NfL, a marker of neuro-axonal damage (Khalil et al., 35 
2018) which can be measured both in CSF and in plasma, and with longitudinal changes 36 
in the aging signature composite as marker of age-related brain atrophy. The particular 37 
use of NfL in this context is supported by its correlation with age throughout the lifespan, 38 
as well as its strong association with all-cause mortality in the elderly (Kaeser et al., 39 
2021).  We found significant positive associations between brain-age delta and plasma 40 
NfL both in CU and MCI individuals, but we did not find significant associations between 41 
CSF NfL and CU brain-age delta. Even though we found NfL to be positively associated 42 
with chronological age in CU individuals, in line with previous studies (Beheshti et al., 43 
2018; Kaufmann et al., 2019; Khalil et al., 2020; Milà-Alomà et al., 2020), the expected 44 
annual change of NfL in CU individuals whose mean age range was 65 years old is around 45 
3.5% (Khalil et al., 2020). Therefore, we expected to find weak associations with brain-46 
age delta. Still, we found a significant interaction effect of age and CSF NfL on CU brain-47 
age delta, for which the individuals with larger brain-age delta had increased CSF NfL 48 
over the years, whereas the decelerated ones remained more stable. This trend was also 49 
seen in plasma NfL for CU and MCI individuals, although the interaction did not reach 50 
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significance. Taken together, a strong association between brain-age delta and plasma 51 
NfL was observed across all individuals whereas the association on CU brain-age delta 52 
and CSF NfL was milder and could only be detected as an interaction with age. Overall, 53 
these mild associations between brain-age delta and NfL suggest that the morphological 54 
effects of aging in the brain are not fully driven by neurodegeneration. In this regard, it is 55 
worth noting that cortical thinning with age has also been linked to loss of volume of the 56 
neuropil and other non-neuronal processes which are not necessarily implicated in 57 
neurodegeneration (Vidal-Pineiro et al., 2020).  58 
 59 
We also studied the associations between brain-age delta and cerebrovascular disease. 60 
Regression analyses revealed significant associations of brain-age delta with increased 61 
WMH for both CU and MCI individuals. These results were expected, as the increase in 62 
WMH with age has been previously studied (Maniega et al., 2015) and it has been shown 63 
that individuals with high WMH burden display spatial patterns of atrophy that partially 64 
overlap with those of brain aging (Brugulat-Serrat, Salvadó, et al., 2020; Habes et al., 65 
2016). In addition, WMH have been linked to cognitive dysfunction and dementia 66 
(Brugulat-Serrat, Salvadó, et al., 2020; Brugulat-Serrat, Salvadó, et al., 2020; Maniega et 67 
al., 2015) and a potential pathway has been proposed, in which small vessel 68 
cerebrovascular disease affects cognition by promoting neurodegenerative changes 69 
(Rizvi et al., 2018). In summary, our results support an effect of cerebrovascular disease 70 
in physiological brain aging. 71 
 72 
Brain structure aging-associated changes have been widely studied (Bakkour et al., 2013; 73 
Fjell et al., 2014). In our study, the brain regions that had highest impact on the machine 74 
learning prediction were similar to regions previously mentioned in literature (Arenaza-75 
Urquijo et al., 2019; Bakkour et al., 2013). We found an overlap between some of our 76 
selected regions and regions included in the aging signature for both females and males, 77 
such as the precentral sulcus, insula, superior frontal and rostral middle frontal regions. 78 
In addition, the effect of sex on age-related changes in brain structure has also been 79 
studied in the recent years, with some studies reporting age–sex interactions in volumes 80 
of certain brain structures (Coffey et al., 1998; DeCarli et al., 2005), and others not finding 81 
such interactions (Greenberg et al., 2008). In our study, we found that, even though most 82 
of the regions with highest impact were the same for males and females, there were some 83 
regions that were sex specific. In particular, we found reduction in the superior-frontal, 84 
isthmus-cingulate and pars orbitalis regions within males and regions such as inferior-85 
parietal, pars triangularis and paracentral within females. Most of these sex-specific 86 
regions were in concordance with previous studies (Armstrong et al., 2019; Podgórski et 87 
al., 2021). The mechanisms underlying these sex-specific brain aging differences are not 88 
well-known. Sexual hormones such as estrogen, progesterone and androgen could play a 89 
role in brain atrophy (Armstrong et al., 2019); in the WHIMS-MRI study (Resnick et al., 90 
2009), women under menopausal hormone therapy were associated with greater brain 91 
atrophy. Others, however, have proposed that estrogen and progesterone may play a 92 
protective effect in women (Armstrong et al., 2019; Green & Simpkins, 2000). Other 93 
possible biological mechanisms influencing these results could be developmental (Baron-94 
Cohen et al., 2005) or the influence of a greater presence of adverse lifestyle-related 95 
factors in men (DeCarli et al., 2005). 96 
 97 
In line with the effect of sex on age-related changes in brain structure, we studied the 98 
effect of sex on the associations between brain-age delta and the above-mentioned 99 
variables. Regarding the AD biomarkers and risk factors, we found that the association 100 
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between brain-age delta and a larger proportion of A+T+ was only seen in females for the 101 
CU individuals, but the interaction effect of sex and AT stages on brain-age delta was not 102 
significant. Regarding the neurodegeneration variables, we found a mild positive 103 
association between brain-age delta and CSF NfL in CU females, as well as a stronger 104 
positive association between brain-age delta and plasma NfL in CU and in MCI females. 105 
These associations were not seen in their male counterparts. However, the interaction 106 
effect of sex and CSF and plasma NfL on CU and MCI brain-age delta was not significant. 107 
In addition, we found a significant interaction effect of age and CSF and plasma NfL on 108 
brain-age delta, for which the CU females with larger brain-age delta had increased CSF 109 
and plasma NfL over the years, whereas the decelerated ones remained more stable. On 110 
the contrary, we found an effect of age interaction with plasma NfL on brain-age delta in 111 
MCI males, but not in MCI females. These results were expected, as females have higher 112 
chances of developing neurodegeneration and have showed to undergo faster cognitive 113 
decline than males (Ferretti et al., 2018). Although the role of sex hormones still needs to 114 
be clarified, it has been suggested that the menopausal drop of estrogen increases 115 
vulnerability to neurological events (Green & Simpkins, 2000; Maioli et al., 2021). On 116 
the contrary, results suggest that morphological effects of aging in the CU males’ brain 117 
are not fully driven by neurodegeneration, although these effects might increase with 118 
older age in MCI males. Lastly, regarding the cerebrovascular disease biomarkers, we 119 
found a positive association between brain-age delta and WMH for both CU females and 120 
males, while no interaction effect of sex was found. Conversely, in MCI individuals, we 121 
only found positive associations between brain-age delta and WMH on males, but no 122 
interaction effect of sex was found in MCI individuals. Overall, we found sex differences 123 
in the associations between brain-age delta and markers of neurodegeneration and 124 
cerebrovascular disease. NfL was only positively associated with brain-age delta in 125 
females and, although WMH were positively associated with both CU females and males, 126 
only MCI males showed this positive association. Positive associations between NfL and 127 
WMH have been previously demonstrated, for both CU and MCI (Osborn et al., 2018), 128 
and the different AD stages (Walsh et al., 2021). Moreover, it has been proposed that 129 
WMH may reflect two different pathological pathways, one including amyloid 130 
aggregation and another including axonal injury (Osborn et al., 2018). Our results may 131 
suggest that brain aging in males might be driven more strongly by the former pathway, 132 
while brain aging in females might be driven more by the latter one. 133 
 134 
Our purpose was to study the clinical validity of using the brain-age delta as a proxy 135 
biomarker of brain aging associated to AD and neurodegeneration. Therefore, our main 136 
aim was studying the characteristics of the individuals whose brain age is more 137 
accelerated or decelerated. One of the strengths of this study was the robustness of the 138 
brain-age delta measurement using a widely used segmentation atlas such as the Desikan-139 
Killiany. Notably, we demonstrated the robustness of our method by training our model 140 
with one cohort and testing independently on four independent cohorts. The similar 141 
results obtained in all cohorts allowed us to seek associations in a large sample of 142 
participants with biomarker data and to further stratify the data by sex. This aspect is 143 
critical for this type of analyses as the effects of biological aging are necessarily very 144 
small, particularly in CU individuals of limited age range. This may explain why we could 145 
not detect significant effects versus longitudinal brain atrophy, as the available sample 146 
size for these analyses were smaller since this variable was not available in all cohorts. 147 
Another strength of our work was that we were able to include a wide range of different 148 
biomarkers of AD pathology allowing us to perform an in-depth analysis of the effect of 149 
these measurements with the brain-age delta. Conversely, our model used a smaller 150 
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number of features and a training set with a more limited age range than other models 151 
seen in literature recently (Liem et al., 2017; Peng et al., 2021), leading to a performance 152 
which cannot be compared against these state-of-the-art models. However, the 153 
performance of age prediction was similar to other publications that used similar 154 
methodologies (Beheshti et al., 2018; Dafflon et al., 2020; de Lange, et al., 2020) and, 155 
most importantly, was successful in studying the utility of brain-age delta as biomarker 156 
for AD and neurodegeneration. Future work should focus on developing a model with 157 
larger number of features or a 3D model and should study the effect of these validation 158 
measurements for AD and neurodegeneration with the brain-age delta more in depth. 159 
 160 
In conclusion, we validated that machine-learning based brain age prediction obtained 161 
from a widely used segmentation atlas can be used as a biomarker of biological brain 162 
aging associated with AD pathology, risk factors and neurodegeneration. Moreover, our 163 
results confirm the presence of sex-related brain aging structural changes and suggest the 164 
prevalence of different neuropathological pathways involved in brain aging within 165 
females and males. Therefore, these results show the necessity to consider different 166 
approaches for assessing aging and neurodegeneration differently for each sex.  167 
 168 
 169 
MATERIALS AND METHODS 170 
 171 

Participants 172 
 173 

We used a collection of T1-weighted brain MRI scans included in the UKBiobank 174 
(www.ukbiobank.ac.uk) dataset for training the proposed model and for calculating cross-175 
validated brain age predictions. The dataset consisted of CU individuals (" = 22,661), 176 
after excluding subjects with ICD-9 and ICD-10 diagnosis, covering individuals of ages 177 
44 to 81.  178 
 179 
We also used four different cohorts to investigate the association between brain-age deltas 180 
with different sets of biomarker and AD risk factor measurements. Inclusion criteria for 181 
the independent cohorts consisted of: (i) availability of T1-weighted MRI brain scans; (ii) 182 
and availability of apolipoprotein E (APOE) categories and of CSF or PET measures for 183 
amyloid-! pathology acquired in less than a year from the MRI acquisition. These 184 
datasets included CU and MCI subjects from ADNI 1,2 and 3 (" = 751, CU = 253, MCI 185 
= 498), CU and MCI (as specified by a Clinical Dementia Rating = 0.5) subjects from the 186 
EPAD cohort (" = 808, CU = 653, MCI = 155), CU subjects from the ALFA+ cohort 187 
(" =380) and CU subjects from the OASIS cohort (" =407).  188 
 189 
All the individuals had available data for the following clinical variables: chronological 190 
age, sex, MMSE and years of education, which will be referred as clinical variables from 191 
now on. A more detailed description of the clinical variables of these datasets is given in 192 
Table 1. Regarding AD-related variables, ALFA+, ADNI and EPAD cohorts included 193 
CSF $!42 measurements for categorizing $! pathology status, AT status determined by 194 
CSF Aβ42 and CSF p-tau, APOE categories and WMH. OASIS, meanwhile, only had 195 
data available for A! PET and APOE categories. In addition, ALFA+ and ADNI included 196 
biomarkers of neurodegeneration such as CSF NfL, plasma NfL and cortical atrophy 197 
measured by longitudinal changes in the so-called aging signature (Bakkour et al., 2013). 198 
The combination of available AD-related variables and neurodegeneration biomarkers 199 
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will be referred as validation variables from so on. A more detailed description of the 200 
validation variables can be seen in Table 2. 201 
 202 

Image Acquisition and Preprocessing 203 
 204 

The UKBioBank, ADNI and OASIS datasets had available T1-weighted magnetic 205 
resonance (MR) images that had already been segmented with Freesurfer and had been 206 
parcellated using the FreeSurfer's cortical Desikan-Killiany(Desikan et al., 2006) and 207 
subcortical aseg(Fischl et al., 2002) labeling pipelines, which had undergone a quality 208 
control procedure. Taking advantage of this available data, we decided to use the same 209 
segmentation pipeline with the ALFA+ and EPAD cohorts. All the image acquisition and 210 
preprocessing done is as follows. 211 
 212 
The UKBiobank dataset consisted of T1-weighted magnetic resonance (MR) images, all 213 
collected using a 3T Siemens Skyra scanner and preprocessed as previously explained in 214 
more detail (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). Images 215 
were previously segmented with Freesurfer 6.0 and underwent a quality control 216 
procedure. 217 
 218 
For ADNI participants (Petersen et al., 2010), MRI acquisition methods are described in 219 
more detail elsewhere (http:// adni.loni.usc.edu/methods/documents/). In brief, most of 220 
the T1-weighted MR were MP-RAGE, acquired with 1.5T or 3T scanners. Images were 221 
segmented with Freesurfer 5.1 and 6.0 and subjected to a quality control procedure. When 222 
possible, we also included a second T1-weighted MRI image sequence for the participants 223 
that underwent another MRI visit 3 years later. These scans were also segmented 224 
following the previously explained procedure. 225 
 226 
For the OASIS subjects (Marcus et al., 2007), the MRI scans were acquired on 1.5 T or 227 
on 3.0 T scanners. T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE) 228 
scans were obtained according to previously explained protocol 229 
(https://theunitedconsortium.com/wp-content/uploads/2021/07/OASIS-230 
3_Imaging_Data_Dictionary_v1.8.pdf ). All MRI sessions were segmented using 231 
FreeSurfer 5.1 or 5.3 and followed quality control measures. The PET images were 232 
acquired with [11C]PIB Pittsburgh’s compound 60-minute dynamic PET scan in 3D 233 
mode and the corresponding analysis analyses were performed using the PET unified 234 
pipeline (PUP, https://github.com/ysu001/PUP). Mean standardized uptake value 235 
(SUVR) values were converted to Centiloid scale as previously explained. 236 
 237 
For the ALFA+ participants, a high-resolution 3D T1-weighted MRI sequence was 238 
acquired in a 3T Philips Ingenia CX scanner (TE/TR=4.6/9.9 ms, Flip Angle = 8º; voxel 239 
size= 0.75x0.75x0.75 mm). Images were segmented with Freesurfer 6.0 and subjected to 240 
a quality control procedure to identify and remove incidental findings (Brugulat-Serrat et 241 
al., 2017) and segmentation errors(Huguet et al., 2021). Some of these ALFA+ subjects 242 
(N=187) underwent a second MRI visit 3 years after the initial visit, where another T1-243 
weighted MRI sequence was acquired and segmented following the same procedure as in 244 
the first visit.  245 
 246 
For the EPAD cohort(Solomon et al., 2018), which is a multisite study,  T1-weighted 247 
MRIs were inversion-recovery prepare 3D gradient-echo sequences, acquired with 3T 248 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.23.22276492doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.23.22276492


 23 

scanners. Images were segmented with Freesurfer 6.0 and subjected to a quality control 249 
procedure (Lorenzini et al., 2021). 250 
 251 
For all the cohorts, subsequent to the FreeSurfer segmentation, tissue regions were 252 
parcellated into 183 different anatomical regions of interest (ROI)s using the widely-used 253 
FreeSurfer's cortical Desikan-Killiany(Desikan et al., 2006) and subcortical aseg(Fischl 254 
et al., 2002) labeling pipelines. As mentioned before, we used the available FreeSurfer 255 
segmentations from UKBioBank, ADNI and OASIS cohorts. All volumes were 256 
residualized with respect to total intracranial volume (TIV) and to scanning site, while all 257 
cortical thicknesses were residualized with respect to scanning site, using linear models. 258 
Lastly, we performed a standardization procedure by computing z-score measurements 259 
feature-wise within each cohort, as previously performed (Casamitjana et al., 2018; 260 
Subramaniapillai et al., 2021; Ten Kate et al., 2018). We then assessed that there were 261 
not statistical differences in mean cortical thickness and volumes between the cohorts 262 
(see Supplementary Fig. 4). 263 
 264 
 265 

Biomarkers  266 
 267 

CSF and plasma collection, processing and biomarkers measurements 268 
 269 

CSF and blood collection, processing and storage in the ALFA+ study have been 270 
described previously (Milà-Alomà et al., 2020a; Suárez‐Calvet et al., 2020). CSF p-271 
tau181 was measured using the Elecsys® Phospho-Tau (181P) CSF 272 
electrochemiluminescence immunoassay on a fully automated cobas e 601 instrument 273 
(Roche Diagnostics International Ltd, Rotkreuz, Switzerland). CSF Ab42 and NfL were 274 
measured with the NeuroToolKit on a cobas e 411 or cobas e 601 instrument (Roche 275 
Diagnostics International Ltd, Rotkreuz, Switzerland). Plasma NfL was measured using 276 
the commercial Quanterix® assay (Simoa® NF-light Kit cat. no. 103186) on a HD-X 277 
analyzer following the manufacturer’s instructions (Quanterix, Billerica, MA, USA). All 278 
these measurements were previously reported (Milà-Alomà et al., 2020; Suárez‐Calvet et 279 
al., 2020). All measurements were performed at the Clinical Neurochemistry Laboratory, 280 
University of Gothenburg, Mölndal, Sweden, by laboratory technicians and scientists 281 
blinded to participants’ clinical information. 282 
 283 
In the ADNI study, CSF samples were measured according to the kit manufacturer’s 284 
instructions and as described in previous studies (Bittner et al., 2016), using the Elecsys 285 
β-amyloid(1–42) CSF (Bittner et al., 2016) , and the Elecsys Phospho-Tau (181P) and 286 
Elecsys Total-Tau CSF immunoassays on a cobas e 601 analyzer at the Biomarker 287 
Research Laboratory, University of Pennsylvania, USA. Plasma NfL was measured on 288 
an in-house immunoassay on the single-molecule array (Simoa) platform, using the same 289 
methodology as described previously, at the Clinical Neurochemistry Laboratory, 290 
University of Gothenburg, Mölndal, Sweden. 291 
 292 
In the EPAD study, CSF was measured using the Elecsys β-amyloid (1–42) and the 293 
Elecsys Phospho-Tau (181P) CSF electrochemiluminescence immunoassay on a fully 294 
automated cobas e 601 instrument (Roche Diagnostics International Ltd.). All 295 
measurements were performed at the Clinical Neurochemistry Laboratory, University of 296 
Gothenburg, Mölndal, Sweden, by laboratory technicians and scientists blinded to 297 
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participants’ clinical information. Concentrations of CSF Ab42 and p-tau181 were 298 
determined according to the manufacturer’s instructions(Solomon et al., 2018). 299 
 300 
 301 

Amyloid-β positivity cutoffs 302 
 303 
For ALFA+, ADNI and EPAD, AT stages were defined by CSF Aβ42 and CSF p-tau, 304 
respectively. Previously used cut-offs were applied to each cohort, consisting of 1098 305 
pg/mL for CSF Aβ42 for ALFA+ and EPAD (Schindler et al., 2018) and of 880 pg/mL 306 
for CSF Aβ42 for ADNI (Hansson et al., 2018) and of 24 pg/mL for p-tau for the three 307 
cohorts (Milà-Alomà et al., 2020). For OASIS, we used the cut-off value of 17 Centiloids 308 
from literature(Salvadó et al., 2019).  309 
 310 

 311 
WMH Volumes 312 

 313 
WMH volumes were generated for ALFA+ and EPAD cohorts using Bayesian Model 314 
Selection (BaMoS) procedure (Sudre et al., 2015), which has been provided previously. 315 
We also obtained the already available WMH volumes for ADNI cohort, in which the 316 
method of WMH volumetric quantification was performed using probabilistic models in 317 
a Markov Random Field framework, as previously provided (Schwarz et al., 2009). For 318 
each cohort, total WMH volumes were derived by summing and multiplying the number 319 
of labeled voxels by voxel dimensions. Total WMH volumes were natural log 320 
transformed and residualized with respect to TIV using linear models.  321 
 322 
 323 

Aging signature measurements 324 
 325 
For ALFA+ and ADNI, we computed the weighted Dickerson’s aging signature (Bakkour 326 
et al., 2013), which has been used as a proxy measurement for brain aging. The aging 327 
signature is a map of specific brain regions that undergo cortical atrophy in normal aging. 328 
This meta-ROI is composed of the surface-area weighted average of the mean cortical 329 
thickness in the following individual ROIs: calcarine, caudal fusiform, caudal insula, 330 
cuneus, inferior frontal gyrus, medial superior frontal and precentral cortices. A Z-score 331 
of this aging-specific measure was calculated based on the mean and standard deviation 332 
of the CU individuals, as done previously (Bakkour et al., 2013). This is referred as Aging 333 
Signature V1. 334 
 335 
In addition, we also computed this measurement on the scanners from the second MRI 336 
visit, referred as Aging Signature V2. We then computed a longitudinal brain atrophy 337 
measurement by computing the aging signature change over the years between the MRI 338 
acquisitions. Therefore, longitudinal aging signature change was computed as: 339 

Aging	signature	change = 	 aging	signature	Visit	2	– aging	signature	Visit	1Time	between	visits  340 
 341 

For another secondary analysis shown in Supplementary Table 9, we also computed the 342 
aging signature (Aging Signature V1) for the remaining independent cohorts: EPAD and 343 
OASIS. 344 
 345 
 346 
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Brain-Age Prediction  347 
 348 

Regression Model  349 
 350 

Model Workflow 351 
  352 

For the current study, we used a gradient boosting framework: the XGBoost regressor 353 
model from the XGBoost python package (https://xgboost.readthedocs.io/en/ 354 
latest/python) to run the brain age prediction. This regressor, which is based on a decision-355 
tree based ensemble algorithm, was selected due to its speed and performance and its 356 
advanced regularization to reduce overfitting (Chen & Guestrin, 2016). In addition, large-357 
scale brain age studies have demonstrated its adequacy (Bashyam et al., 2020; de Lange 358 
et al., 2019; de Lange, Barth, et al., 2020; Kaufmann et al., 2019). As it has been shown 359 
that there are sex-related trajectories in normal aging (Podgórski et al., 2021), we trained 360 
separate models for females and males. For each model, we first performed Bayesian 361 
parameter optimization based on a cross-validation scheme with ten folds and ten repeats 362 
per fold using the FreeSurfer volumes and thickness of the UK BioBank as input. For the 363 
optimization we used HYPEROPT (Bergstra et al., 2013), with which we scanned for 364 
maximum depth, number of estimators, learning rate, alpha regularization, lambda 365 
regularization, subsample, gamma and colsample by tree. The optimized parameters were 366 
maximum depth = 4, number of estimators = 800, learning rate = 0.03, alpha 367 
regularization = 4, lambda regularization =1, subsample= 0.36, gamma = 3 and colsample 368 
by tree = 0.89 for the males model; and maximum depth = 4, number of estimators = 850, 369 
learning rate = 0.03, alpha regularization = 8.5, lambda regularization =14.5, subsample= 370 
0.449, gamma = 3.5 and colsample by tree = 0.72 for the females model. We trained these 371 
two models and performed the brain-age prediction on the independent cohorts. We 372 
decided to compute a ROI based model using these 183 FreeSurfer regions because they 373 
are widely used and available in most of the neuroimaging datasets. Therefore, our aim 374 
was not to compare our performance to the one achieved by a model trained with larger 375 
number of ROIs or with the full 3D images, but to study the generalizability and the 376 
relevance of our model in the AD field. 377 
 378 

Contribution of Brain Regions in prediction 379 
 380 
We computed SHAP (SHapley Additive exPlanation) values 381 
(https://github.com/slundberg/shap) to measure the contribution of each brain region in 382 
the prediction of age for each subject. SHAP assigns an importance value within the 383 
prediction to each feature (in this case, brain region), which is based on its unique 384 
consistent and locally accurate attribution (Lundberg et al., 2020). We calculated the 385 
average SHAP value for each region for all females and males of the UK BioBank cohort.  386 
 387 
In addition, to assess that the regions with highest SHAP values were stable, we 388 
performed a permutation approach to study the significance of each region, separately for 389 
females and males. With this aim we compared the averaged SHAP value (region-390 
specific) obtained when using the entire train set on the model to a null distribution 391 
calculated from 1,000 permutations performing subsample of the subjects, in which we 392 
trained and tested the model using 80% and 20% of the individuals, respectively. 393 

 394 
Brain-Age Delta Estimation  395 

 396 
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We predicted brain-age on the independent cohorts separately: ALFA+, EPAD, ADNI 397 
and OASIS, using the previously trained model. To investigate the prediction 398 
performance, correlation analyses were run for predicted brain-age versus chronological 399 
age, R2, root mean square error (RMSE), and mean absolute error (MAE) were calculated 400 
for each independent cohort separately, as well as for females and males separate pooled 401 
from all independent cohorts. We also investigated the prediction performance on the 402 
UKBioBank cohort by computing the average latter metrics from a cross validation with 403 
ten splits and ten repetitions. 404 

 405 
As recent research has shown that brain-age estimation involves a proportional bias (de 406 
Lange & Cole, 2020; Le et al., 2018; Liang et al., 2019; Smith et al., 2019), we applied a 407 
well-established age-bias correction procedure to our data (de Lange & Cole, 2020; Le et 408 
al., 2018). This correction, as originally proposed (de Lange & Cole, 2020; Le et al., 409 
2018), consists of a linear regression between age (W) and brain-predicted age (;) on each 410 
of the independent cohorts, ; = a	 ×W	 + 	b. The derived values of slope (a) and 411 
intercept (b) from the training set were used to correct the predicted brain-age in each test 412 
set by applying: Corrected	Predicted	Brain	Age = Predicted	Brain	Age + [W	 − (a	 ×413 
W	 + 	b)]. By subtracting the chronological age from the Corrected Predicted Brain Age, 414 
we obtained the brain-age delta which was used to test the associations with the validation 415 
measurements. The result of the correction is shown in Supplementary Fig.3.  416 
 417 

Statistical Analyses  418 
 419 
All statistical analyses were conducted using Python 3.7.0. We tested for normality of the 420 
distribution for each biomarker using the Kolmogorov-Smirnov test and visual inspection 421 
of histograms. CSF NfL and plasma NfL did not follow a normal distribution and were 422 
thus natural log transformed. In addition, to compare the measurements for CSF NfL and 423 
for plasma NfL coming from different cohorts (ALFA+ and ADNI), CSF and plasma NfL 424 
was converted to z-scores. 425 
 426 
To study the performance and accuracy of the brain-age prediction for each cohort, 427 
correlation analyses were run for predicted brain-age versus chronological age. We also 428 
computed R2, RMSE and MAE for each cohort, as well as the age bias of the prediction 429 
after bias correction. We assessed statistically whether the accuracy of the predicted 430 
brain-age was different between cohorts by using Fisher’s z-transformation for 431 
correlation coefficients. In addition, we computed these performance metrics to assess 432 
the differences in the model for females and males in the pooled cohorts. Results from 433 
another secondary analysis are also shown in Supplementary Table 2, in which we 434 
assessed the performance and accuracy of the aging signature for all cohorts, by 435 
performing correlation analyses between the aging signature versus chronological age 436 
and computing the R2 and RMSE. In this secondary analyses, we also studied whether 437 
the performance obtained for the predicted brain-age was better than the aging signature 438 
by performing the William’s test (Williams, 1959) for the Pearson’s correlation 439 
coefficient and a F-test to assess which model was statistically better. 440 
 441 
We used the brain-age delta as a measure of brain aging to study the associations between 442 
this measurement and the different AD and neurodegeneration biomarkers and risk 443 
factors. With this aim, we pooled all the subjects from all cohorts together and computed 444 
linear regression models for each validation variable, in which chronological age and sex 445 
were included as covariates. Local effect size of each of the continuous validation 446 
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variables was calculated using Cohen’s f2 (Cohen, 2013). The mean brain age delta 447 
among Aβ pathology, AT stages and APOE status, were assessed by a one-way analysis 448 
of covariance (ANCOVA) adjusting for age and sex. Effect size of the different levels 449 
was calculated by dividing the estimated difference in the brain-age delta between the 450 
different categories by the estimated standard deviation. We also stratified the individuals 451 
by sex and studied the associations between brain-age delta and the different validation 452 
variables by computing linear regression models in which chronological age was included 453 
as covariate. We next tested for interactions between sex and the validation variables on 454 
brain-age delta using linear regression models and including chronological age as 455 
covariate. Lastly, we tested for interactions between age and the validation variables on 456 
brain-age delta for CU and MCI individuals.  457 
 458 
We also studied the differences in volumes and cortical thickness between females and 459 
males in the UKBioBank for the brain regions that contributed the most to the prediction 460 
according to the SHAP values. With this aim we performed regression models for each 461 
ROI with sex as predictor variable, in which linear and quadratic expansions of age, site 462 
and TIV (only included for volume ROIs), were included as covariates.  463 
 464 
As a secondary analysis we wanted to identify the individuals whose predicted brain-age 465 
deviate the most from chronological aging, i.e., individuals with the highest positive or 466 
lowest negative brain-age deltas, to study the above-mentioned associations. With this 467 
aim, we selected the individuals whose brain-age delta was included within the 10th and 468 
90th percentile of the distribution for each independent cohort and studied the differences 469 
between these groups. The methodology and the results of this analysis can be found in 470 
Supplementary Appendix A.  471 

 472 
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