1,373 research outputs found

    The OPERA experiment

    Get PDF
    OPERA is a neutrino oscillation experiment designed to perform a nu\_tau appearance search at long distance in the future CNGS beam from CERN to Gran Sasso. It is based on the nuclear emulsion technique to distinguish among the neutrino interaction products the track of a tau produced by a nu\_tau and its decay tracks. The OPERA detector is presently under construction in the Gran Sasso underground laboratory, 730 km from CERN, and will receive its first neutrinos in 2006. The experimental technique is reviewed and the development of the project described. Foreseen performances in measuring nu\_tau appearance and also in searching for nu\_e appearance are discussed

    The neutrino velocity anomaly as an explanation of the missing observation of neutrinos in coincidence with GRB

    Full text link
    The search for neutrinos emitted in coincidence with Gamma-Bay Burst has been so far unsuccessfully. In this paper we show that the recent result reported by the OPERA Collaboration on an early arrival time of muon neutrinos with respect to the one computed assuming the speed of light in vacuum could explain the null search for neutrinos in coincidence with Gamma-Ray Burst

    Receipt from Metropolitan Opera and Real Estate Co. to Ogden Goelet

    Get PDF
    https://digitalcommons.salve.edu/goelet-personal-expenses/1031/thumbnail.jp

    Comment on superluminality in general relativity

    Full text link
    General relativity provides an appropriate framework for addressing the issue of sub- or superluminality as an apparent effect. Even though a massless particle travels on the light cone, its average velocity over a finite path measured by different observers is not necessarily equal to the velocity of light, as a consequence of the time dilation or contraction in gravitational fields. This phenomenon occurs in either direction (increase or depletion) irrespectively of the details and strength of the gravitational interaction. Hence, it does not intrinsically guarantee superluminality, even when the gravitational field is reinforced.Comment: 6 page

    A low energy optimization of the CERN-NGS neutrino beam for a theta_{13} driven neutrino oscillation search

    Full text link
    The possibility to improve the CERN to Gran Sasso neutrino beam performances for theta_{13} searches is investigated. We show that by an appropriate optimization of the target and focusing optics of the present CNGS design, we can increase the flux of low energy neutrinos by about a factor 5 compared to the current tau optimized focalisation. With the ICARUS 2.35 kton detector at LNGS and in case of negative result, this would allow to improve the limit to sin^22 theta_{13} by an order of magnitude better than the current limit of CHOOZ at Delta m^2 approximately 3 times 10^{-3} eV^2 within 5 years of nominal CNGS running. This is by far the most sensitive setup of the currently approved long-baseline experiments and is competitive with the proposed JHF superbeam.Comment: 19 pages, 8 figure

    Measurement of electrical properties of electrode materials for the bakelite Resistive Plate Chambers

    Full text link
    Single gap (gas gap 2 mm) bakelite Resistive Plate Chamber (RPC) modules of various sizes from 10 cm \times 10 cm to 1 m \times 1 m have been fabricated, characterized and optimized for efficiency and time resolution. Thin layers of different grades of silicone compound are applied to the inner electrode surfaces to make them smooth and also to reduce the surface resistivity. In the silicone coated RPCs an efficiency > 90% and time resolution \sim 2 ns (FWHM) have been obtained for both the streamer and the avalanche mode of operation. Before fabrication of detectors the electrical properties such as bulk resistivity and surface resistivity of the electrode materials are measured carefully. Effectiveness of different silicone coating in modifying the surface resistivity was evaluated by an instrument developed for monitoring the I-V curve of a high resistive surface. The results indicate definite correlation of the detector efficiency for the atmospheric muons and the RPC noise rates with the surface resistivity and its variation with the applied bias voltage. It was also found that the surface resistivity varies for different grades of silicone material applied as coating, and the results are found to be consistent with the detector efficiency and noise rate measurements done with these RPCs.Comment: 9 Pages, 6 figure

    Current Status of Neutrino Masses and Mixings

    Get PDF
    The evidences in favor of solar and atmospheric neutrino oscillations are briefly reviewed and shown to be gracefully accommodated in the framework of three-neutrino mixing with bilarge mixing.Comment: 5 pages. Talk presented at the 31st International Conference on High Energy Physics "ICHEP02", 24-31 July 2002, Amsterda

    Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network

    Get PDF
    We have studied the performance of a new algorithm for electron/pion separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The software for separation consists of two parts: a shower reconstruction algorithm and a Neural Network that assigns to each reconstructed shower the probability to be an electron or a pion. The performance has been studied for the ECC of the OPERA experiment [1]. The e/πe/\pi separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data taken at CERN (pion beams) and at DESY (electron beams). The algorithm allows to achieve a 90% electron identification efficiency with a pion misidentification smaller than 1% for energies higher than 2 GeV

    Future Precision Neutrino Oscillation Experiments and Theoretical Implications

    Full text link
    Future neutrino oscillation experiments will lead to precision measurements of neutrino mass splittings and mixings. The flavour structure of the lepton sector will therefore at some point become better known than that of the quark sector. This article discusses the potential of future oscillation experiments on the basis of detailed simulations with an emphasis on experiments which can be done in about ten years. In addition, some theoretical implications for neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott, Enkoping, Sweden, 19-24 Aug 200
    corecore