182 research outputs found

    Depth profile photoemission study of thermally diffused Mn/GaAs (001) interfaces

    Full text link
    We have performed a depth profile study of thermally diffused Mn/GaAs (001) interfaces using photoemission spectroscopy combined with Ar+^+-ion sputtering. We found that Mn ion was thermally diffused into the deep region of the GaAs substrate and completely reacted with GaAs. In the deep region, the Mn 2pp core-level and Mn 3dd valence-band spectra of the Mn/GaAs (001) sample heated to 600 ^{\circ}C were similar to those of Ga1x_{1-x}Mnx_xAs, zinc-blende-type MnAs dots, and/or interstitial Mn in tetrahedrally coordinated by As atoms, suggesting that the Mn 3dd states were essentially localized but were hybridized with the electronic states of the host GaAs. Ferromagnetism was observed in the dilute Mn phase.Comment: 5 pages, 4 figure

    Photoemission and x-ray absorption studies of valence states in (Ni,Zn,Fe,Ti)3_{3}O4_{4} thin films exhibiting photo-induced magnetization

    Full text link
    By means of photoemission and x-ray absorption spectroscopy, we have studied the electronic structure of (Ni,Zn,Fe,Ti)3_{3}O4_{4} thin films, which exhibits a cluster glass behavior with a spin-freezing temperature TfT_f of 230\sim 230 K and photo-induced magnetization (PIM) below TfT_f. The Ni and Zn ions were found to be in the divalent states. Most of the Fe and Ti ions in the thin films were trivalent (Fe3+^{3+}) and tetravalent (Ti4+^{4+}), respectively. While Ti doping did not affect the valence states of the Ni and Zn ions, a small amount of Fe2+^{2+} ions increased with Ti concentration, consistent with the proposed charge-transfer mechanism of PIM.Comment: 4 pages, 4 figure

    Significant nutrient consumption in the dark subsurface layer during a diatom bloom: a case study on Funka Bay, Hokkaido, Japan

    Get PDF
    We conducted repetitive observations in Funka Bay, Hokkaido, Japan, on 15 February, 4 and 15 March, and 14 April 2019. The diatom spring bloom peaked on 4 March and started declining on 15 March. Funka Bay winter water remained below 30 m depth, which was below the surface mixed-layer and dark-layer depth (0.1 % of the surface photosynthetically active radiation, PAR, depth) on 4 and 15 March. In the subsurface layer at depths of 30–50 m, concentrations of NO3-, PO43-, and Si(OH)4 decreased by half between these dates, even in the dark. Incubation experiments using the diatom Thalassiosira nordenskioeldii showed that this diatom could consume added nutrients in the dark at substantial rates after pre-culturing to deplete nutrients. Incubation experiments using natural seawater collected in the growing phase of the bloom on 8 March 2022 also showed that nutrient-depleted phytoplankton could consume added nutrients in the dark. We excluded three physical process – water mixing, diffusive transport, and subduction – as possible main reasons for the decrease in nutrients in the subsurface layer. We conclude that the nutrient reduction in the subsurface layer (30–50 m) between 4 and 15 March 2019 could be explained by nutrient consumption by diatoms in the dark in that layer.</p

    Transcriptome Profiling of Lotus japonicus Roots During Arbuscular Mycorrhiza Development and Comparison with that of Nodulation

    Get PDF
    To better understand the molecular responses of plants to arbuscular mycorrhizal (AM) fungi, we analyzed the differential gene expression patterns of Lotus japonicus, a model legume, with the aid of a large-scale cDNA macroarray. Experiments were carried out considering the effects of contaminating microorganisms in the soil inoculants. When the colonization by AM fungi, i.e. Glomus mosseae and Gigaspora margarita, was well established, four cysteine protease genes were induced. In situ hybridization revealed that these cysteine protease genes were specifically expressed in arbuscule-containing inner cortical cells of AM roots. On the other hand, phenylpropanoid biosynthesis-related genes for phenylalanine ammonia-lyase (PAL), chalcone synthase, etc. were repressed in the later stage, although they were moderately up-regulated on the initial association with the AM fungus. Real-time RT–PCR experiments supported the array experiments. To further confirm the characteristic expression, a PAL promoter was fused with a reporter gene and introduced into L. japonicus, and then the transformants were grown with a commercial inoculum of G. mosseae. The reporter activity was augmented throughout the roots due to the presence of contaminating microorganisms in the inoculum. Interestingly, G. mosseae only colonized where the reporter activity was low. Comparison of the transcriptome profiles of AM roots and nitrogen-fixing root nodules formed with Mesorhizobium loti indicated that the PAL genes and other phenylpropanoid biosynthesis-related genes were similarly repressed in the two organs

    Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    Get PDF
    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from similar to 25 degrees N to 20 degrees S and compare the results with those from Atlantic meridional transects (similar to 50 degrees N to 50 degrees S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 mu mol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain similar to 10% of primary production in both the western tropical Pacific

    Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --

    Full text link
    Twelve high schools in Japan (of which six are in Fukushima Prefecture), four in France, eight in Poland and two in Belarus cooperated in the measurement and comparison of individual external doses in 2014. In total 216 high-school students and teachers participated in the study. Each participant wore an electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of his/her whereabouts and activities. The distributions of annual external doses estimated for each region overlap with each other, demonstrating that the personal external individual doses in locations where residence is currently allowed in Fukushima Prefecture and in Belarus are well within the range of estimated annual doses due to the background radiation level of other regions/countries

    Genetic approaches to understanding the causes of stuttering

    Get PDF
    Stuttering is a common but poorly understood speech disorder. Evidence accumulated over the past several decades has indicated that genetic factors are involved, and genetic linkage studies have begun to identify specific chromosomal loci at which causative genes are likely to reside. A detailed investigation of one such region on chromosome 12 has identified mutations in the GNPTAB gene that are associated with stuttering in large families and in the general population. Subsequent studies identified mutations in the functionally related GNPTG and NAGPA genes. Mutations in these genes disrupt the lysosomal targeting pathway that generates the Mannose 6-phosphate signal, which directs a diverse group of enzymes to their target location in the lysosome of the cell. While mutations in these three genes can be identified in less than 10% of cases of familial stuttering, this knowledge allows a variety of new studies that can help identify the neuropathology that underlies this disorder
    corecore