110 research outputs found

    Integrated acoustic immunoaffinity-capture (IAI) platform for detection of PSA from whole blood samples.

    Get PDF
    On-chip detection of low abundant protein biomarkers is of interest to enable point-of-care diagnostics. Using a simple form of integration, we have realized an integrated microfluidic platform for the detection of prostate specific antigen (PSA), directly in anti-coagulated whole blood. We combine acoustophoresis-based separation of plasma from undiluted whole blood with a miniaturized immunoassay system in a polymer manifold, demonstrating improved assay speed on our Integrated Acoustic Immunoaffinity-capture (IAI) platform. The IAI platform separates plasma from undiluted whole blood by means of acoustophoresis and provides cell free plasma of clinical quality at a rate of 10 uL/min for an online immunoaffinity-capture of PSA on a porous silicon antibody microarray. The whole blood input (hematocrit 38-40%) rate was 50 μl min(-1) giving a plasma volume fraction yield of ≈33%. PSA was immunoaffinity-captured directly from spiked female whole blood samples at clinically significant levels of 1.7-100 ng ml(-1) within 15 min and was subsequently detected via fluorescence readout, showing a linear response over the entire range with a coefficient of variation of 13%

    Signal amplification using "spot on-a-chip" technology for the identification of proteins via MALDI-TOF MS

    No full text
    The presented "spot-on-a-chip" technology enables easy enrichment of samples in the low nanomolar (1-5 nM) range and provides a fast and reliable automated sample preparation method for performing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis with high sensitivity and throughput. Through microdispensing, which allows accurate deposition of 60-pL droplets, dilute samples were enriched by making multiple droplet depositions in nanovials. The sample was confined to a defined spot area (300 x 300 mum), and multiple depositions increase the surface density of analyte in the nanovial, thereby providing detection of low attomole levels. The impact of the nanovial geometry with respect to the MALDI-TOF MS resolution for peptides deposited in the microfabricated silicon vials was investigated and the optimal geometry and size were determined. The spot-on-a-chip technology, that is, the combination of microdispensing, micromachined silicon nanovials and on-spot enrichment provides a signal amplification of at least 10-50 times as compared to an ordinary sample preparation. The linearity of the enrichment effect is shown by the analysis of a peptide mixture at the 5 nM level. The signal amplification provided by the spot-on-a-chip enrichment is demonstrated by the analysis of relevant biological samples, interleukin-8 from a spiked cell supernatant, and by successful protein identification of an excised spot from a high-sensitivity silver-stained two-dimensional electrophoresis gel separation

    Fragmentations of [M - H](-) anions of peptides containing tyrosine sulfate. Does the sulfate group rearrange? A joint experimental and theoretical study

    No full text
    RationaleTo investigate the fragmentations in the negative-ion electrospray mass spectra of peptides containing tyrosine sulfate.MethodsPossible fragmentation mechanisms were explored using a Waters QTOF2 tandem mass spectrometer in concert with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory.ResultsThe major negative ion formed in the ESI-MS of peptides containing tyrosine sulfate is [(M-H)-SO3](-) and this process normally yields the base peak of the spectrum. The basic backbone cleavages of [(M-H)-SO3](-) allowed the sequence of the peptide to be determined. Rearrangement reactions involving the formation of HOSO3(-) and [(M-H)-H2SO4](-) yielded minor peaks with relative abundances ≤ 10% and ≤ 2%, respectively.ConclusionsThe mass spectra of the [M-H](-) and [(M-H)-SO3](-) anions of peptides containing tyrosine sulfate allowed the position of the tyrosine sulfate group to be determined, together with the amino acid sequence of the peptide.T. T. Nha Tran, Tianfang Wang, Sandra Hack and John H. Bowi

    Connective Tissue Growth Factor (CTGF) contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFβ

    No full text
    Objectives One mechanism by which cartilage responds to mechanical load is by releasing heparinbound growth factors from the pericellular matrix (PCM). By proteomic analysis of the PCM, we identified connective tissue growth factor (CTGF) and here investigate its function and mechanism of action. Methods# ecombinant CTGF (rCTGF) was used to stimulate human chondrocytes for microarray analysis. Endogenous CTGF was investigated by in vitro binding assays and confocal microscopy. Its release from cut cartilage (injury CM) was analysed by Western blot under reducing and non-reducing conditions. A postnatal, conditional CtgfcKO mouse was generated for cartilage injury experiments and to explore the course of osteoarthritis (OA) by destabilisation of the medial meniscus. siRNA knockdown was performed on isolated human chondrocytes. Results he biological responses of rCTGF were TGFβ dependent. CTGF displaced latent TGFβ from cartilage and both were released on cartilage injury. CTGF and latent TGFβ migrated as a single high molecular weight band under non-reducing conditions, suggesting that they were in a covalent (disulfide) complex. This was confirmed by immunoprecipitation. Using CtgfcKO mice, CTGF was required for sequestration of latent TGFβ in the matrix and activation of the latent complex at the cell surface through TGFβR3. In vivo deletion of CTGF increased the thickness of the articular cartilage and protected mice from OA. Conclusions# CTGF is a latent TGFβ binding protein that controls the matrix sequestration and activation of TGFβ in cartilage. Deletion of CTGF in vivo caused a paradoxical increase in Smad2 phosphorylation resulting in thicker cartilage that was protected from OA.</p
    corecore