25 research outputs found

    Seasonal Changes in the Tropical Atlantic Circulation: Observation and Simulation of the Guinea Dome

    Get PDF
    The Guinea Dome is a permanent, quasi-stationary feature on the eastern side of the thermal ridge extending zonally across the tropical North Atlantic. The dome is a part of the large-scale near-surface flow fields associated with the North Equatorial Current, the North Equatorial Countercurrent and the North Equatorial Undercurrent. In the present study, historical and recently obtained hydrographic data are combined to investigate the thermohaline structure and geostrophic flow field in the vicinity of the dome. It is shown that the Guinea Dome exists throughout the year both in subthermocline and thermocline layers, that it has a corresponding cyclonic geostrophic flow, and that seasonal changes occur with respect to its vertical structure, horizontal extent, and position. The observational results are then compared with simulations from a general circulation model of the tropical Atlantic. A seven-year simulation forced by observed monthly winds is run to compute a monthly climatology. The model adequately simulates the Guinea Dome with respect to its structure, flow field, and seasonal variability

    Energy conversion in the Cape Verde Frontal Zone

    Get PDF
    Mechanical energy terms are calculated from moored current meter data in the Cape Verde Frontal Zone (about 20°N, 25°W) and compared with those derived from a mesoscale model of this frontal region. The model is of the Bleck and Boudra [1981] type with isopycnal coordinates. An initially zonal jet, representing the Canary Current, is allowed to develop under the influence of baroclinic and barotropic instability processes. We find reasonable agreement in magnitudes, somewhat smaller in the model, and similar distributions in the vertical. This leads to the conclusion that the energy transfer terms from the model can be expected to be sufficiently close to reality. Determination of the transfer terms confirms that the energy transfer in the zone is dominated by baroclinic instability processes while barotropic instability is of minor importance. Average baroclinic instability energy transfer terms reach values of 2–3 μW m−3 in the pycnocline. Peak layer mean values are of the order 10 μW m−3. It is shown that the spatial distribution of active transfer regions is closely related to the structure of the transient eddy field in the frontal zone and that strong instability processes are restricted to the pycnocline

    High-resolution observations in the Western Mediterranean Sea: The REP14-MED experiment

    Get PDF
    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Sea west of Sardinia Island (Western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 gliders, time series were available from moored instruments, and information on Lagrangian flow patterns were obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over four orders of magnitude from O(101 m) to O(105 m), and the time series from the moored instruments cover a spectral range of five orders from O(101 s) to O(106 s). The objective of this article is to provide an overview of the huge data set which is utilized by various ongoing studies, focusing on (i) sub-mesoscale and mesoscale pattern analyses, (ii) operational forecasting in terms of the development and assessment of sampling strategies, assimilation methods, and model validation, (iii) modeling the variability of the ocean, and (iv) testing of new payloads for gliders

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    WHP Cruise Summary Information of section A10

    Get PDF
    corecore