196 research outputs found

    Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors

    Get PDF
    To investigate the role of A2A adenosine receptors in adaptive responses to chronic intermittent dopamine receptor stimulation, we compared the behavioral sensitization elicited by repeated L-DOPA treatment in hemiparkinsonian wild-type (WT) and A2A adenosine receptor knock-out (A2A KO) mice. Although the unilateral nigrostriatal lesion produced by intrastriatal injection of 6-hydroxydopamine was indistinguishable between WT and A2A KO mice, they developed strikingly different patterns of behavioral sensitization after daily treatment with low doses of L-DOPA for 3 weeks. WT mice initially displayed modest contralateral rotational responses and then developed progressively greater responses that reached a maximum within 1 week and persisted for the duration of the treatment. In contrast, any rotational behavioral sensitization in A2A KO mice was transient and completely reversed within 2 weeks. Similarly, the time to reach the peak rotation was progressively shortened in WT mice but remained unchanged in A2A KO mice. Furthermore, daily L-DOPA treatment produced gradually sensitized grooming in WT mice but failed to induce any sensitized grooming in A2A KO mice. Finally, repeated L-DOPA treatment reversed the 6-OHDA-induced reduction of striatal dynorphin mRNA in WT but not A2A KO mice, raising the possibility that the A2A receptor may contribute to L-DOPA-induced behavioral sensitization by facilitating adaptations within the dynorphin-expressing striatonigral pathway. Together these results demonstrate that the A2A receptor plays a critical role in the development and particularly the persistence of behavioral sensitization to repeated L-DOPA treatment. Furthermore, they raise the possibility that the maladaptive dyskinetic responses to chronic L-DOPA treatment in Parkinson's disease may be attenuated by A2A receptor inactivation.Peer Reviewe

    Bioactive and Elastic Emulsion Electrospun DegraPol Tubes Delivering IGF-1 for Tendon Rupture Repair

    Full text link
    Tendon injuries can result in two major drawbacks. Adhesions to the surrounding tissue may limit the range of motion, while fibrovascular scar formation can lead to poor biomechanical outcomes. Prosthetic devices may help to mitigate those problems. Emulsion electrospinning was used to develop a novel three-layer tube based on the polymer DegraPol (DP), with incorporated insulin-like growth factor-1 (IGF-1) in the middle layer. Scanning electron microscopy was utilized to assess the fiber diameter in IGF-1 containing pure DP meshes. Further characterization was performed with Fourier Transformed Infrared Spectroscopy, Differential Scanning Calorimetry, and water contact angle, as well as through the assessment of mechanical properties and release kinetics from ELISA, and the bioactivity of IGF-1 by qPCR of collagen I, ki67, and tenomodulin in rabbit Achilles tenocytes. The IGF-1-containing tubes exhibited a sustained release of the growth factor up to 4 days and showed bioactivity by significantly upregulated ki67 and tenomodulin gene expression. Moreover, they proved to be mechanically superior to pure DP tubes (significantly higher fracture strain, failure stress, and elastic modulus). The novel three-layer tubes intended to be applied over conventionally sutured tendons after a rupture may help accelerate the healing process. The release of IGF-1 stimulates proliferation and matrix synthesis of cells at the repair site. In addition, adhesion formation to surrounding tissue can be reduced due to the physical barrier

    An aging Interventions Testing Program: study design and interim report

    Full text link
    The National Institute on Aging's Interventions Testing Program (ITP) has developed a plan to evaluate agents that are considered plausible candidates for delaying rates of aging. Key features include: (i) use of genetically heterogeneous mice (a standardized four-way cross), (ii) replication at three test sites (the Jackson Laboratory, TJL; University of Michigan, UM; and University of Texas, UT), (iii) sufficient statistical power to detect 10 changes in lifespan, (iv) tests for age-dependent changes in T cell subsets and physical activity, and (v) an annual solicitation for collaborators who wish to suggest new interventions for evaluation. Mice in the first cohort were exposed to one of four agents: aspirin, nitroflurbiprofen (NFP), 4-OH- -phenyl-N-tert-butyl nitrone (4-OH-PBN), or nordihydroguiaretic acid (NDGA). An interim analysis was conducted using survival data available on the date at which at least 50 of the male control mice had died at each test site. Survival of control males was significantly higher, at the interim time-point, at UM than at UT or TJL; all three sites had similar survival of control females. Males in the NDGA group had significantly improved survival ( P 0.0004), with significant effects noted at TJL ( P < 0.01) and UT ( P < 0.04). None of the other agents altered survival, although there was a suggestion ( P 0.07) of a beneficial effect of aspirin in males. More data will be needed to determine if any of these compounds can extend maximal lifespan, but the current data show that NDGA reduces early life mortality risks in genetically heterogeneous mice at multiple test sites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74625/1/j.1474-9726.2007.00311.x.pd

    Pleiotropic effects of statins in distal human pulmonary artery smooth muscle cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent clinical data suggest statins have transient but significant effects in patients with pulmonary arterial hypertension. In this study we explored the molecular effects of statins on distal human pulmonary artery smooth muscle cells (PASMCs) and their relevance to proliferation and apoptosis in pulmonary arterial hypertension.</p> <p>Methods</p> <p>Primary distal human PASMCs from patients and controls were treated with lipophilic (simvastatin, atorvastatin, mevastatin and fluvastatin), lipophobic (pravastatin) and nitric-oxide releasing statins and studied in terms of their DNA synthesis, proliferation, apoptosis, matrix metalloproteinase-9 and endothelin-1 release.</p> <p>Results</p> <p>Treatment of human PASMCs with selected statins inhibited DNA synthesis, proliferation and matrix metalloproteinase-9 production in a concentration-dependent manner. Statins differed in their effectiveness, the rank order of anti-mitogenic potency being simvastatin > atorvastatin > > pravastatin. Nevertheless, a novel nitric oxide-releasing derivative of pravastatin (NCX 6550) was effective. Lipophilic statins, such as simvastatin, also enhanced the anti-proliferative effects of iloprost and sildenafil, promoted apoptosis and inhibited the release of the mitogen and survival factor endothelin-1. These effects were reversed by mevalonate and the isoprenoid intermediate geranylgeranylpyrophosphate and were mimicked by inhibitors of the Rho and Rho-kinase.</p> <p>Conclusions</p> <p>Lipophilic statins exert direct effects on distal human PASMCs and are likely to involve inhibition of Rho GTPase signalling. These findings compliment some of the recently documented effects in patients with pulmonary arterial hypertension.</p

    Adenosine induces growth-cone turning of sensory neurons

    Get PDF
    The formation of appropriate connections between neurons and their specific targets is an essential step during development and repair of the nervous system. Growth cones are located at the leading edges of the growing neurites and respond to environmental cues in order to be guided to their final targets. Directional information can be coded by concentration gradients of substrate-bound or diffusible-guidance molecules. Here we show that concentration gradients of adenosine stimulate growth cones of sensory neurons (dorsal root ganglia) from chicken embryos to turn towards the adenosine source. This response is mediated by adenosine receptors. The subsequent signal transduction process involves cAMP. It may be speculated that the in vivo function of this response is concerned with the formation or the repair and regeneration of the peripheral nervous system

    Adenosine A2A receptors in Parkinson’s disease treatment

    Get PDF
    Latest results on the action of adenosine A2A receptor antagonists indicate their potential therapeutic usefulness in the treatment of Parkinson’s disease. Basal ganglia possess high levels of adenosine A2A receptors, mainly on the external surfaces of neurons located at the indirect tracts between the striatum, globus pallidus, and substantia nigra. Experiments with animal models of Parkinson’s disease indicate that adenosine A2A receptors are strongly involved in the regulation of the central nervous system. Co-localization of adenosine A2A and dopaminergic D2 receptors in striatum creates a milieu for antagonistic interaction between adenosine and dopamine. The experimental data prove that the best improvement of mobility in patients with Parkinson’s disease could be achieved with simultaneous activation of dopaminergic D2 receptors and inhibition of adenosine A2A receptors. In animal models of Parkinson’s disease, the use of selective antagonists of adenosine A2A receptors, such as istradefylline, led to the reversibility of movement dysfunction. These compounds might improve mobility during both monotherapy and co-administration with L-DOPA and dopamine receptor agonists. The use of adenosine A2A receptor antagonists in combination therapy enables the reduction of the L-DOPA doses, as well as a reduction of side effects. In combination therapy, the adenosine A2A receptor antagonists might be used in both moderate and advanced stages of Parkinson’s disease. The long-lasting administration of adenosine A2A receptor antagonists does not decrease the patient response and does not cause side effects typical of L-DOPA therapy. It was demonstrated in various animal models that inhibition of adenosine A2A receptors not only decreases the movement disturbance, but also reveals a neuroprotective activity, which might impede or stop the progression of the disease. Recently, clinical trials were completed on the use of istradefylline (KW-6002), an inhibitor of adenosine A2A receptors, as an anti-Parkinson drug

    Disclosing apoptosis in the CNS

    No full text

    Disclosing apoptosis in the CNS

    No full text
    • …
    corecore