4 research outputs found

    Genetic and environmental influences on human height from infancy through adulthood at different levels of parental education

    Get PDF
    Genetic factors explain a major proportion of human height variation, but differences in mean stature have also been found between socio-economic categories suggesting a possible effect of environment. By utilizing a classical twin design which allows decomposing the variation of height into genetic and environmental components, we tested the hypothesis that environmental variation in height is greater in offspring of lower educated parents. Twin data from 29 cohorts including 65,978 complete twin pairs with information on height at ages 1 to 69 years and on parental education were pooled allowing the analyses at different ages and in three geographic-cultural regions (Europe, North America and Australia, and East Asia). Parental education mostly showed a positive association with offspring height, with significant associations in mid-childhood and from adolescence onwards. In variance decomposition modeling, the genetic and environmental variance components of height did not show a consistent relation to parental education. A random-effects meta-regression analysis of the aggregate-level data showed a trend towards greater shared environmental variation of height in low parental education families. In conclusion, in our very large dataset from twin cohorts around the globe, these results provide only weak evidence for the study hypothesis.Peer reviewe

    Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994

    No full text
    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic variance showed a generally increasing trend across the birth-year cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and Australia, and East Asia), total height variance was greatest in North America and Australia and lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts emerged. Our findings do not support the hypothesis that heritability of height is lower in populations with low living standards than in affluent populations, nor that heritability of height will increase within a population as living standards improve

    Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region : an individual-based pooled analysis of 40 twin cohorts

    Get PDF
    Background: Genes and the environment contribute to variation in adult body mass index [BMI (in kg/m(2))], but factors modifying these variance components are poorly understood. Objective: We analyzed genetic and environmental variation in BMI between men and women from young adulthood to old age from the 1940s to the 2000s and between cultural-geographic regions representing high (North America and Australia), moderate (Europe), and low (East Asia) prevalence of obesity. Design: We used genetic structural equation modeling to analyze BMI in twins >= 20 y of age from 40 cohorts representing 20 countries (140,379 complete twin pairs). Results: The heritability of BMI decreased from 0.77 (95% CI: 0.77, 0.78) and 0.75 (95% CI: 0.74, 0.75) in men and women 2029 y of age to 0.57 (95% CI: 0.54, 0.60) and 0.59 (95% CI: 0.53, 0.65) in men 70-79 y of age and women 80 y of age, respectively. The relative influence of unique environmental factors correspondingly increased. Differences in the sets of genes affecting BMI in men and women increased from 20-29 to 60-69 y of age. Mean BMI and variances in BMI increased from the 1940s to the 2000s and were greatest in North America and Australia, followed by Europe and East Asia. However, heritability estimates were largely similar over measurement years and between regions. There was no evidence of environmental factors shared by co-twins affecting BMI. Conclusions: The heritability of BMI decreased and differences in the sets of genes affecting BMI in men and women increased from young adulthood to old age. The heritability of BMI was largely similar between cultural-geographic regions and measurement years, despite large differences in mean BMI and variances in BMI. Our results show a strong influence of genetic factors on BMI, especially in early adulthood, regardless of the obesity level in the population.Peer reviewe

    Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts

    No full text
    corecore