106 research outputs found

    Effect of an edible nanomultilayer coating by electrostatic self-assembly on the shelf life of fresh-cut mangoes

    Get PDF
    This work aims at evaluating the effect of an alginate-chitosan nanomultilayer coating, obtained by electrostatic layer-by-layer self-assembling, in the quality and shelf life of fresh-cut mangoes. Coated and uncoated fresh-cut mangoes were stored under refrigeration (8 °C) for 14 days. The changes in mass loss, titratable acidity, pH, ascorbic acid content, total soluble solids, malondialdehyde content, browning rate, and microbial count were evaluated during storage. At the end of the storage period, lower values of mass loss, pH, malondialdehyde content, browning rate, soluble solids, microorganisms proliferation, and higher titratable acidity were observed in the coated mangoes. The nanomultilayer coating did not improve the retention of vitamin C during storage of fresh-cut mangoes. Results suggest that chitosan-alginate nanomultilayer edible coating extends the shelf life of fresh-cut mangoes up to 8 days.Author Marthyna Pessoa de Souza thanks Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/PDEE-Brazil) and Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE, Brazil) for granting her scholarships. The authors thank the Fundacao para a Ciencia e a Tecnologia (FCT) Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes", REF. NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, and FEDER (Portugal)

    Using jasmonates and salicylates to reduce losses within the fruit supply chain

    Get PDF
    The fresh produce industry is constantly growing, due to increasing consumer demand. The shelf-life of some fruit, however, is relatively short, limited by microbial contamination or visual, textural and nutritional quality loss. Thus, techniques for reducing undesired microbial contamination, spoilage and decay, as well as maintaining product’s visual, textural and nutritional quality are in high demand at all steps within the supply chain. The postharvest use of signalling molecules, i.e. jasmonates and salicylates seems to have unexplored potential. The focus of this review is on the effects of treatment with jasmonates and salicylates on the fresh produce quality, defined by decay incidence and severity, chilling injury, maintenance of texture, visual quality, taste and aroma, and nutritional content. Postharvest treatments with jasmonates and salicylates have the ability to reduce decay by increasing fruit resistance to diseases and reducing chilling injury in numerous products. These treatments also possess the ability to improve other quality characteristics, i.e. appearance, texture maintenance and nutritional content. Furthermore, they can easily be combined with other treatments, e.g. heat treatment, ultrasound treatment. A good understanding of all the benefits and limitations related to the postharvest use of jasmonates and salicylates is needed, and relevant information has been reviewed in this paper

    Sugar-and-acid profile of Penjar tomatoes and its evolution during storage

    Get PDF
    The alcobaca mutation in the Penjar tomato (Solanum lycopersicum L.) variety alters the ripening process and confers a long shelf life (more than four months). Storage of Penjar tomatoes leads to a distinctive sensory profile valued by local consumers, who prefer aged tomatoes to fresh ones. To study chemical changes occurring during storage, we characterized the complete sugar-and-acid profile of 25 accessions at harvest and at 2 and 4 months after harvest. We found considerable variability in the sugar-and-acid profile within the Penjar variety, especially for fructose and glucose. Some accessions presented exceptionally high values for sugars, making them especially interesting for breeding programs. During postharvest, the concentration of glucose, fructose, and citric acid decreased, whereas the concentration of malic and glutamic acids increased. Data from this study offer novel insights into postharvest changes in tomato quality parameters and help elucidate the reasons for the appreciation of this variety by consumers.Postprint (published version

    A comparison of the molecular mechanisms underpinning high-intensity, pulsed polychromatic light and low-intensity UV-C hormesis in tomato fruit

    Get PDF
    Postharvest treatment of tomato fruit with high-intensity, pulsed polychromatic light (HIPPL) has previously been shown to induce delayed ripening and disease resistance comparable to that of low-intensity UV-C (LIUV). Little, however, is known of the mechanisms underpinning postharvest HIPPL hormesis in tomato fruit. Expression of genes involved in plant hormone biosynthesis, defence, secondary metabolism and ripening were monitored 24 h post treatment (24 HPT), 10 d post treatment (10 DPT) and 12 h post inoculation with Botrytis cinerea (12 HPI). All genes monitored were constitutively expressed and changes in expression profiles following treatment were highly similar for both HIPPL and LIUV treatments. Expression of pathogenesis-related proteins P4, β-1,3,-Glucanase and Chitinase 9 and a jasmonate biosynthesis enzyme (OPR3), were significantly upregulated at 10 DPT and 12 HPI. Both treatments significantly downregulated the expression of polygalacturonase and flavonol synthase at 10 DPT and 12 HPI. Ethylene biosynthesis enzyme ACO1 and β-carotene hydroxylase were significantly upregulated at 24 HPT, and phenylalanine ammonia-lyase (PAL) was significantly upregulated at 12 HPI. Both HIPPL and LIUV treatments stimulate defence responses that are mediated by salicylic acid, jasmonic acid and ethylene. This may lead to broad range resistance against both necrotrophic and biotrophic pathogens as well as abiotic stresses and herbivorous pests. Following inoculation with B. cinerea only PAL showed indication of a gene priming response for HIPPL- and LIUV-treated fruit
    corecore