79 research outputs found

    A possible role of the ATP-sensitive potassium ion channel in determining the duration of spike-bursts in mouse pancreatic β-cells

    Get PDF
    AbstractThe pancreatic β-cell displays an electrical activity consisting of spike bursts and silent phases at glucose concentrations of about 10 mM. The mechanism of initial depolarization induced by glucose is well defined. However, the mechanism inducing the silent phase has not been fully elucidated. In the present study, the possibility of involvement of ATP-sensitive K+ channels in repolarization was examined using the patch-clamp technique in the cell-attached recording configuration. Ouabain (0.1 mM), an inhibitor of Na+/K+-ATPase, caused a complete suppression of ATP-sensitive K+ channel activity followed by typical biphasic current deflections, which were due to action potentials. The channel activity was also inhibited by removal of K+ from a perifusion solution. Furthermore, the activity of ATP-sensitive K+ channels was markedly inhibited either by replacement of external NaCl with LiCl or by addition of amiloride (0.2 mM), a blocker of Na+/H+ antiport. Addition of L-type Ca2+ channel blockers such as Nifedipine or Mn2+ induced the complete suppression of K+ channel activity. These findings strongly suggest that a fall in ATP consumption results in sustained depolarization, and that the repolarizations interposed between spike-bursts under normal ionic conditions are due to the periodical fall of ATP concentration brought about by periodical acceleration of ATP consumption at Na+/K+-pumps. It is concluded that the elevation of intracellular Na+ concentration as a consequence of accelerated Na+/Ca2+-countertransport during the period of spike-burst enhances ATP consumption, leading to a fall in ATP concentration which is responsible for termination of spike-burst and initiation of repolarization

    PKC-Mediated ZYG1 Phosphorylation Induces Fusion of Myoblasts as well as of Dictyostelium Cells

    Get PDF
    We have previously demonstrated that a novel protein ZYG1 induces sexual cell fusion (zygote formation) of Dictyostelium cells. In the process of cell fusion, involvements of signal transduction pathways via Ca2+ and PKC (protein kinase C) have been suggested because zygote formation is greatly enhanced by PKC activators. In fact, there are several deduced sites phosphorylated by PKC in ZYG1 protein. Thereupon, we designed the present work to examine whether or not ZYG1 is actually phosphorylated by PKC and localized at the regions of cell-cell contacts where cell fusion occurs. These were ascertained, suggesting that ZYG1 might be the target protein for PKC. A humanized version of zyg1 cDNA (mzyg1) was introduced into myoblasts to know if ZYG1 is also effective in cell fusion of myoblasts. Quite interestingly, enforced expression of ZYG1 in myoblasts was found to induce markedly their cell fusion, thus strongly suggesting the existence of a common signaling pathway for cell fusion beyond the difference of species

    A combined Langendorff-injection technique for simultaneous isolation of single cardiomyocytes from atria and ventricles of the rat heart

    Full text link
    Single cardiomyocytes are widely used for investigations of the cellular and molecular mechanisms of regulation and modulation of cardiac performance. Intact cardiomyocytes allow one to study in detail cell function avoiding the effects of extracellular matrix and neighboring cells. The most established protocols of cardiomyocyte isolation are based on the isolated heart perfusion using a Langendorff-apparatus or on intraventricular perfusion using a syringe. However, the yield of single cardiomyocytes obtained by these methods may be low due to the cell injury following non-uniform enzyme digestion of connective tissue in different heart chambers. Moreover, isolation of atrial cardiomyocytes is challenging because of their small size and complex geometric shape. Here we present a new protocol for simultaneous isolation of high quality cardiomyocytes from the atria, ventricular free walls and interventricular septum. The protocol is based on the combination of the Langendorff perfusion method with the intraventricular and intra-atrial injection technique taking into account the collagen content variation between the different heart chambers. Obtained cells demonstrate rod-shaped morphology, a clear and regular sarcomere striation pattern and rat-specific frequency-dependence of contraction and calcium transient parameters. Our protocol provides gentle cell isolation that increases the yield of single cardiomyocytes suitable for biophysical researches. © 2020 The AuthorsSupported by President Grant of the RF #МК-949.2019.4, Russian Foundation for Basic Research # 20-315-70006, and the theme of the IIF UrB RAS #AAAA-A19-119070190064-4

    Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death.

    Get PDF
    Atypically-shaped cardiomyocytes (ACMs) are beating heart cells identified in the cultures of cardiomyocyte-removed fractions obtained from adult mouse hearts. Since ACMs spontaneously develop into beating cells in the absence of hormones or chemicals, these cells are likely to be a type of cardiac progenitors rather than stem cells. "Native ACMs" are found as small interstitial cells among ventricular myocytes that co-express cellular prion protein (PrP) and cardiac troponin T (cTnT) in mouse and human heart tissues. However, the endogenous behavior of human ACMs is unclear. In the present study, we demonstrate that PrP(+) cTnT(+) cells are present in the human heart tissue with myocardial infarction (MI). These cells were mainly found in the border of necrotic cardiomyocytes caused by infarcts and also in the hibernating myocardium subjected to the chronic ischemia. The ratio of PrP(+) cTnT(+) cells to the total cells observed in the normal heart tissue section of mouse and human was estimated to range from 0.3-0.8%. Notably, living human PrP(+) cTnT(+) cells were identified in the cultures obtained at pathological autopsy despite exposure to lethal ischemic conditions for hours after death. These findings suggest that ACMs could survive in the ischemic human heart and develop into a sub-population of cardiac myocytes

    P2Y2 and P2Y6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells

    Get PDF
    Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N = 7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM) > ATP (EC50 2.2 ± 1.1 μM) = UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (< 30 μM) and UDP-glucose (< 30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0 ± 8.5% max inhibition; N = 7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0 ± 8.4% max inhibition; N = 6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues
    corecore