2,972 research outputs found

    The Effect on Program Participation of Replacing Current Low-Income Housing Programs with an Entitlement Housing Voucher Program

    Get PDF
    This paper estimates the effect on participation rates of families of various types of replacing HUD’s largest low-income housing programs with alternative tenure-neutral entitlement housing voucher programs that differ in their taxpayer cost and the relative generosity of the subsidy to households of different types. The estimates of participation in the entitlement programs are based primarily on the five-percent household sample from the 2000 Decennial Census and participation experience in the only entitlement housing assistance programs that have been operated in the United States. HUD’s administrative records provide data on current recipients of low-income housing assistance. The paper explores the sensitivity of the results to the equations used to predict participation. The results indicate that even the entitlement housing voucher program that costs 10 percent less than the current system would serve 50 percent more households in total and many more of each type – white, black, and Hispanic; elderly and nonelderly; families living in metropolitan and nonmetropolitan areas; small, medium, and large families; and households in the first two real income deciles.Low-income housing assistance, housing vouchers, welfare reform two-sided markets, junk mail, email, telemarketing, Do Not Call List, message pricing, the Medium is the Message, market research. Classification-H53, I38, R00

    Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano

    Get PDF
    IndexaciĂłn: Web of Science; Scopus.In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, H-3-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 mu E m(-2) s(-1), 72 W m(-2) and 12 W m(-2) were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO43- concentrations. BSP short-term response (4 h) to solar radiation was measured by H-3-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure) hypothesis where the more isolated the community is from ground water sources, the better adapted it is to solar radiation. We suggest that factors other than solar radiation (e.g., salinity, PO43-, NO3-) are also important in determining microbial productivity in heterogeneous environments such as the Salar de Huasco.http://journal.frontiersin.org/article/10.3389/fmicb.2016.01857/ful

    PET/MRI of Hepatic 90Y Microsphere Deposition Determines Individual Tumor Response.

    Get PDF
    PurposeThe purpose of our study is to determine if there is a relationship between dose deposition measured by PET/MRI and individual lesion response to yttrium-90 ((90)Y) microsphere radioembolization.Materials and methods26 patients undergoing lobar treatment with (90)Y microspheres underwent PET/MRI within 66 h of treatment and had follow-up imaging available. Adequate visualization of tumor was available in 24 patients, and contours were drawn on simultaneously acquired PET/MRI data. Dose volume histograms (DVHs) were extracted from dose maps, which were generated using a voxelized dose kernel. Similar contours to capture dimensional and volumetric change of tumors were drawn on follow-up imaging. Response was analyzed using both RECIST and volumetric RECIST (vRECIST) criteria.ResultsA total of 8 hepatocellular carcinoma (HCC), 4 neuroendocrine tumor (NET), 9 colorectal metastases (CRC) patients, and 3 patients with other metastatic disease met inclusion criteria. Average dose was useful in predicting response between responders and non-responders for all lesion types and for CRC lesions alone using both response criteria (p < 0.05). D70 (minimum dose to 70 % of volume) was also useful in predicting response when using vRECIST. No significant trend was seen in the other tumor types. For CRC lesions, an average dose of 29.8 Gy offered 76.9 % sensitivity and 75.9 % specificity for response.ConclusionsPET/MRI of (90)Y microsphere distribution showed significantly higher DVH values for responders than non-responders in patients with CRC. DVH analysis of (90)Y microsphere distribution following treatment may be an important predictor of response and could be used to guide future adaptive therapy trials

    Compost Carryover: Nitrogen Phosphorous and FT-IR Analysis of Soil Organic Matter

    Get PDF
    Compost plays a central role in organic soil fertility plans but is bulky and costly to apply. Determining compost carryover is therefore important for cost-effective soil fertility planning. This study investigated two aspects of nutritive carryover [nitrogen and phosphorus (P)], and an indicator of non-nutritive carryover [soil organic matter (SOM)] to determine the residual effect of a one-time compost application applied at four rates in a corn-squash rotation. Crop yield was measured as an integrated carryover indicator of nutritive and non-nutritive effects. Functional groups of compost and SOM were investigated using FT-IR spectroscopy and soil organic carbon (SOC). While year to year variability was great, compost had a persistent positive effect on crop yields, evident 3 years after application with no reduction in magnitude over time. Soil nitrate was low, and additions of compost at any rate generally did not increase levels beyond the year of application, with the exception of year four. Olsen P was also low, yet was higher in amended soils than in non-amended soils 3 years after application. Pronounced polysaccharide peaks, evident in compost spectra and absent in control soil, were apparent in compost-amended soils 3 years after compost treatment and SOC was greater 2 years afterwards. Compost carryover was most pronounced in year four following the incorporation of a nitrogen-fixing cover crop. These results show that compost can influence nutritive and non-nutritive soil properties many years after incorporation, thereby reinforcing the importance of including compost in organic fertility plans despite the unpredictability of year-to-year response
    • …
    corecore