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Abstract 

Compost plays a central role in organic soil fertility plans but is bulky and costly to apply. 

Determining compost carryover is therefore important for cost-effective soil fertility planning. 

This study investigated two aspects of nutritive carryover (nitrogen and phosphorus (P)), and an 

indicator of non-nutritive carryover (soil organic matter (SOM)) to determine the residual effect 

of a one-time compost application applied at four rates in a corn-squash rotation. Crop yield 

was measured as an integrated carryover indicator of nutritive and non-nutritive effects. 

Functional groups of compost and SOM were investigated using FT-IR spectroscopy and soil 

organic carbon (SOC). While year to year variability was great, compost had a persistent 

positive effect on crop yields, evident three years after application with no reduction in 

magnitude over time. Soil nitrate was low, and additions of compost at any rate generally did 

not increase levels beyond the year of application, with the exception of year four. Olsen P was 

also low, yet was higher in amended soils than in non-amended soils three years after 

application. Pronounced polysaccharide peaks, evident in compost spectra and absent in 

control soil, were apparent in compost-amended soils three years after compost treatment and 

SOC was greater two years afterwards. Compost carryover was most pronounced in year four 

following the incorporation of a nitrogen-fixing cover crop. These results show that compost 

can influence nutritive and non-nutritive soil properties many years after incorporation, 

thereby reinforcing the importance of including compost in organic fertility plans despite the 

unpredictability of year-to-year response. 

Key Words: compost carryover, residual compost effects, organic farming, FT-IR spectroscopy 
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Introduction 

Organic farming poses unique challenges for soil fertility management. Organic producers 

utilize a more diverse range of inputs to meet fertility goals, which complicates efforts to match 

nutrient availability with crop demand. In addition, organic growers must operate within a 

paradigm which mandates responsible management of soil and water resources. Organic 

farmers rely on intuition and observation, advice from vendors, conventional soil tests, and 

their own experience to make decisions about the quantity and types of soil amendments to 

apply. As a result, there is tremendous variability in both the quantities of nutrients applied and 

the resulting soil fertility status on organically managed farms (Wander et al. 2011).   

Composts and manures are commonly used on organic and low input farms to maintain 

or improve soil fertility. Used primarily for their within-season fertilizing contribution, composts 

and manures also play an important role in soil organic matter (SOM) accumulation and long-

term improvements in soil quality. These long-term effects provide a residual nutritive benefit 

which is frequently overlooked in fertility planning. Whereas inorganic fertilizers are available 

immediately, compost decomposes gradually, mineralizing nutrients over many years at 

decreasing rates. Compost also contains a wide range of plant nutrients in addition to nitrogen 

(N), which are slowly released into the soil, further complicating fertility planning. Typically the 

N/P ratio of manures and composts is less than that of plants, so growers who base their 

application rates to achieve an N target often apply P in excess of crop needs (Eghball and 

Power 1999). Excess P can become an environmental pollutant if it is carried into surface or 

ground waters where it can cause eutrophication and contamination (Daniel et al. 1994).  

Excess concentrations of Cu and Zn may also accumulate in soils (Wander et al. 2011).  
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In addition, compost influences a range of soil physical and chemical properties which 

provide many crop benefits that are non-nutritive in nature (Chen et al. 1998; Pinamonti 1998; 

Seiter and Horwath 2004; Rivero et al. 2004; Weil and Magdoff 2004). Following an initial 

application, these nutritive and non-nutritive benefits carryover from year-to-year. Soil fertility 

in a given year therefore becomes a function of the total compost applied, plus a proportion of 

previous years’ applications that are carried over into the current year (Endelman et al. 2010). 

Understanding compost carryover is therefore the first step in redefining fertility management 

in farming systems where compost/manure forms an important part of total farm inputs.   

The residual effect of compost is predominantly a result of the physical and chemical 

composition of the compost itself. During composting, easily degradable plant compounds such 

as carbohydrates and proteins become decomposed, and more recalcitrant plant compounds, 

such as lignin, together with microbial products and non-identifiable humic substances are 

relatively enriched (Leifeld et al. 2002).  Most of the easily mineralizable N and C is lost, leaving 

only more stable and recalcitrant forms of N and C (Eghball et al. 1997). The finished product 

has a higher degree of humification and chemical stabilization than the original raw materials, 

and exhibits a higher aliphatic character and polysaccharide content than native soil (Soler 

Rovira et al. 2003).  

Many infrared wavelengths are known to induce bonding vibrations in a wide range of 

functional groups, and can therefore be used to characterize organic and inorganic molecules 

(Stevenson 1994). Fourier transform infrared spectroscopy (FT-IR) has been widely used to 

study aspects of compost and SOM. Compost stability and maturity have been well described 

(Chen 2003; Niemeyer et al. 1992; Inbar et al. 1989) and many studies report changes in SOM 
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resulting from agricultural activity or amendment (Sohi et al. 2005; Ellerbrock et al. 1999ab). 

Ellerbrock et al. (1999b) found that FT-IR analysis of soils was useful in detecting changes in 

functional groups, in particular carboxylic groups, in response to manure treatments. Although 

FT-IR has been used successfully to study various compositional aspects of compost and SOM 

and may be a more sensitive tool to detect changes in SOM pools than gross total organic C 

measurements. To our knowledge, no studies have investigated compost persistence in soil 

following a one-time application, on certified organic land. 

The goal of this study was to investigate compost carryover on both nutritive and non-

nutritive soil properties as a first step towards improving organic nutrient management plans. 

We hypothesized that soil N and P concentrations can be used to measure nutritive aspects of 

compost carryover and that FT-IR can be used to identify functional groups displaying residual 

carryover arising from a one-time application of compost. Finally we hypothesized that crop 

yield would be the best integrated indicator of carryover of both nutritive and non-nutritive 

effects.  

 

Materials and Methods 

In the spring of 2008, an experiment designed to assess compost carryover under organically 

managed conditions was established at the Greenville research farm of Utah State University in 

North Logan, UT. The soil was a Millville silt loam (coarse-silty, carbonatic, mesic Typic 

Haploxeroll) and had been leveled in the past (last time in early 1990s) with a 0.5% slope to the 

south west to facilitate flood irrigation. Baseline soil properties are shown in Table 1 and were 

measured according to recommended soil testing methods for the Western region (Gavlak et al. 
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2003). Total C and N were determined by dry combustion (LECO TruSpec C/N).  Nitrate-N and 

ammonium-N were measured in 5:1 extracts (1M KCl) by automated colorimetry cadmium 

reduction and salicylate methods respectively (Lachat QuickChem AE). Electrical Conductivity 

(EC) and pH were measured in 1:1 soil/water extracts while P and K were determined from 

NaHCO3 extracts according to the Olsen method. The site had been managed organically since 

2005 and had been planted with various summer and winter cover crops prior to the trial 

period. 

 Four levels of compost (10, 20, 30, 40 Mg DM ha
-1

) were applied in each of three years 

(2008, 2009, and 2010) to three randomly assigned replicate plots per rate.  A further four plots 

served as control plots and received no compost in any year. Plots received compost for the 

first time each year and received compost only once over the course of the experiment.  The 

experiment therefore consisted of 40 plots, 36 of which (3 years × 4 treatment levels × 3 

replicates) received a one-time compost application and four received no compost. The 40 plots 

were arranged in 2 strips if 20 plots each. Each plot was 4.6 m x 4.6 m in dimension.  

Although originally designed as a three year experiment, a further year was added 

(2011) because of a poor treatment response observed in the third year (2010). In 2011 the 

experimental design did not allow for the addition of compost to the plots but could still be 

used to assess compost carryover. 

Compost 

Compost was purchased in bulk from Miller’s in Hyrum, UT. Miller’s ‘Premium Organic 

Compost’ brand was used in 2008, while ‘Millers Steer Compost’ was used in both 2009 and 

2010. Both composts were made from the same feedstocks (steer manure, stomach contents 
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and non-treated woodchips), however the Premium Organic mix also contained humic acids 

from a mined source. Chemical analyses of the composts are shown in Table 2. Total C and N 

were determined by dry combustion (LECO TruSpec C/N).  Nitrate- N and ammonium-N were 

measured in 5:1 extracts (1M KCl) by automated colorimetry cadmium reduction and salicylate 

methods respectively (Lachat QuickChem AE). Electrical Conductivity (EC) and pH were 

measured in 1:1 compost/water extracts while total P and K were determined by HNO3/H2O2 

digestion. Olsen P and K were measured instead of total P and K in 2008 (Olsen et al. 1954). 

 Plots were treated with one of four rates of compost (10, 20, 30, 40 Mg DM ha
-1

). 

Treatment rates were calculated on a volume basis using compost bulk density. Compost was 

spread evenly over the plots with a rake and incorporated with a rototiller. No other additional 

amendments or fertilizers were used and Supplemental Table 1 provides the compost 

incorporation dates for each year.  

Crops 

Two crops were grown in rotation, summer squash and silage corn. The crops were chosen to 

reflect a high and moderate nutrient demand and not necessarily a standard crop rotation 

(although in Utah silage or sweet corn are commonly grown in combination with a vegetable 

such as onions or melons in addition to wheat or alfalfa). Certified organic summer squash 

(Cucurbita pepo L.) hybrid (‘Golden Zucchini’) was used in 2008, and 2010. In 2008 plants were 

started in the USU Research Greenhouse on May 28
th

 and in 2010 plants were started in 50-cell 

flats in the greenhouses on May 13th. In 2008 the potting mix contained Miller Premium 

Organic Compost, vermiculite, perlite, and blood meal. In 2010 the potting mix was comprised 

of peat moss (0.22m
3
), perlite (0.11m

3
) and vermiculite (0.11m

3
) with the addition of 5.7L of 
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fertilizer comprised of 15 parts bone meal, 10 parts blood meal, 10 parts kelp meal, and 5 parts 

dolomite. No synthetic fertilizers or amendments were used.  

 Three sheets of black plastic mulch (1.2m wide) were laid down the full length of the 

plot area (91.4m) at a spacing of 1.5m in early June. Seedlings were transplanted into the mulch 

at a spacing of 0.61m between plants within a row with 2 rows spaced 0.61m apart. Thus each 

sheet of mulch contained two rows of plants in a staggered pattern. Plant density was 21,500 

plants ha
-1

.  See Supplemental Table 1 for the transplant dates of each year. A severe 

windstorm occurred on June 13, 2010 and the majority of the squash crop was lost. On June 15, 

2010 a replacement crop was direct seeded into the plastic mulch and the damaged plants 

removed. Weeds were controlled between mulch rows with a walk behind stirrup hoe and 

0.46m rototiller. Overhead sprinklers on 1.82m risers were used in all years. Plots were irrigated 

once per week for four hours duration at a rate of 0.414cm hr
-1

 for a total 1.66cm week
-1

.  No 

signs of water stress were observed. 

 Squash fruit were picked twice per week for four weeks. See Supplemental Table 1 for 

the first harvest date of each year. All fruit larger than 15cm in length were harvested and fresh 

weights were recorded from 6 plants within the center row of each plot to minimize potential 

boundary effects.  The average cumulative harvest weight per plant was calculated and then 

this number was scaled to a 1 hectare basis using the density of 21,500 plants ha
-1

.  

 The second crop was a certified organic field corn (Zea mays L.) hybrid (Dahlco 2146). 

Seeds were drilled 91.4m long, with rows spaced 0.76m apart for a total of 6 rows per plot. See 

Supplemental Table 1 for seeding dates for each year. The crop was not systematically thinned 
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and emerged with an average density of 100,000 plants ha
-1

. Weeds were controlled within row 

by hand, and between row by a combination of rototiller and walk-behind wheel hoe.  

 Corn plants were harvested by hand at approximately 30% dry matter. Data were 

collected from the two center plant rows of each plot (1.5m × 1.5m area). Corn ears were 

removed and fresh weights recorded for both corn stalks and ears. See Supplemental Table 1 

for harvest dates for each year. Ears and stalks were dried at 50°C for a minimum of 14 days 

and ears shelled. Dry weights were recorded for both stalks and grain. The average grain and 

silage yield per plot was calculated and then scaled to a 1 hectare basis using the density of 

100,000 plants ha
-1

.  

Cover Crop 

A hard red winter wheat (Triticum aestivium) cover crop was seeded at a rate of 28 kg ha
-1

 on 

all plots in September 28 2007, September 24 2008 and September 29 2009. The cover crop 

was allowed to over-winter before being tilled under in the following spring. In 2010 hairy vetch 

(Vicia villosa) was planted in combination with winter wheat and seeded at a rate of 30 kg ha
-1

 

for vetch and 28 kg ha
-1

 for wheat on September 30.  Cover crops were first mowed and then 

incorporated using a rototiller on May 15 2008, May 20 in 2009, May 27 in 2010, and May 27 in 

2011.  

Soil Analysis 

In 2009, 2010, and 2011 bulk soil samples were collected from both corn and squash plots at a 

time corresponding to 30 days of corn growth. This 30-day mark is widely used by corn growers 

to assess early-season soil-N and apply a side-dress fertilizer if required. In each year, five 

subsamples of 0-30 cm depth were collected from the center of each plot and combined into 
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one representative sample per plot. Soils were passed through a 2-mm sieve and stored at 4°C 

until analysis. Sub-samples were oven dried for 24 hrs at 105°C and gravimetric moisture 

content determined.  Nitrate (NO3
-
) and ammonium (NH4

+
) content was determined by 

automated colorimetry using the cadmium reduction and salicylate methods respectively 

(Lachat QuickChem AE) in 5:1 extracts (1M KCl).  Electrical Conductivity (EC) and pH were 

measured in 1:1 soil/water extracts while P was determined in 1:20 soil/NaHCO3 extracts 

according to the Olsen method in 2011 only (Olsen et al. 1954). All measurements were made 

according to recommended testing methods for the Western region (Gavlak et al. 2003). 

FT-IR Spectroscopy and SOC 

Only the high rate (40Mg DM ha
-1

) compost, and control treatments were selected for FT-IR and 

soil organic carbon (SOC) analysis. Soils (0-10cm) were sampled in September 2011 in plots 

which had received 40Mg ha
-1

 compost in 2008, 2009, and 2010. Additionally, soils were 

sampled from plots which had received no compost over the course of the study. Each replicate 

was comprised of six soil subsamples, collected from the center of each plot and then 

combined to make one representative sample. Soils were sieved through a 2-mm screen and 

air-dried before being ground with a mortar and pestle. Soil organic C (OC) and inorganic C (IC) 

was measured using a Skalar Primacts SLC Analyzer model CS22 (Breda, Netherlands) using the 

two temperature method of Chechester and Chaisen (1992). Compost was also analyzed by FT-

IR spectroscopy. A sample from each of the three composts applied during the experiment was 

air dried and ground. Two replicates from each year were scanned, adjusted for background, 

and their spectra averaged to depict a representative spectrum for each compost. 
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  Individual FT-IR spectra were composed of 333 scans with a resolution of 4cm
-1 

(Thermo 

Scientific Nicolet 6700). For each treatment year, including zero rate control, two samples were 

selected and spectra determined for two reps of each sample, for a total of 4 spectra for each 

sample year, and 4 spectra for control. Each group of 4 spectra was corrected against the 

spectrum for background before being averaged to make one final spectrum representative of 

each treatment year as well as control. The operating range was 550-3500cm
-1

. FT-IR spectra 

were corrected for mineral component by mathematical subtraction based on the FT-IR spectra 

of the ash from the same sample, as described below. 

Organic matter was oxidized in a 1:10 soil/sodium hypochlorite extract. Sodium 

hypochlorite (6% NaOCl) was adjusted to pH 9.50. Soils were first allowed to react with the 

NaOCl in pyrex centrifuge tubes for 9 hrs at room temperature (25°C) before being placed in a 

digestor set at 90°C. Soils were digested for 20 minutes and were agitated every 5 minutes with 

a vortex mixer. Soils were then allowed to cool to room temperature before being centrifuged 

for 10 minutes at 2,310 x g. The supernatant was discarded. Heat treatment and centrifuge 

steps were repeated 4 times until supernatant was transparent.  

Soils were then washed in a 1:10 soil/CaCO3 solution (15mM) before being shaken on an 

end-to-end shaker for 10 minutes and then centrifuged for 10 minutes at 2,310 x g. 

Supernatant was discarded and the process repeated for a total of three wash treatments. Soils 

were then dried at room temperature (25°C) for 12 hrs. 

Compost spectra were interpreted based on the characteristic FT-IR absorption bands 

for composted manure described by Carballo et al. (2008). Carballo et al. (2008) defined these 

as; 2960 – 2850cm
-1

 (C-H stretch of aliphatic structures), 1620 – 1660cm
-1

 (C=O vibrations of 
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ketones, quinnone, carboxylic acids and esters, as well as C=C vibrations of aromatic 

components), 1430 – 1455cm
-1

 (O-H in-plane bend of carboxylic acids, CO2 stretch of 

carboxylates and aliphatic CH2 alkanes, and also C-O stretch vibration of carbonates), 1030 – 

1150cm
-1

 (polysaccharides), 1504cm
-1

 (weak peak), and 1595cm
-1

 (vibration of the aromatic 

skeleton of lignin). 

Statistical Analysis 

Crop yield, Soil N, Soil P.  Analysis of variance and regression diagnostics for the influence of 

compost on crop yield, Soil N, and Soil P were conducted in R using the function lm from the 

stats package (R Development Core Team, 2014).  Stepwise model selection was conducted 

using the stepAIC function from the MASS package (Venables and Ripley, 2002).  Spatial 

covariates for “strip” (1-2) and “range” (1-20) were included as potential variables in the 

stepwise regression (experiment had 2 x 20 physical layout, with a gap between the strips).  

Contrasts were estimated using the glht function in R package multcomp (Hothorn et al., 2008). 

FT-IR Spectroscopy and SOC. Statistical analysis of polysaccharide peak area was conducted. 

Integration under the peaks was achieved using OMNIC software (Omnic 8.0, Fisher Thermo 

Scientific Inc.) for all 16 spectra in the range 800-1300cm
-1

. Analysis of variance of peak area 

and SOC was determined using PROC GLIMMIX (SAS version 3.1) in a single factor design where 

year of compost addition was the only factor. All model assumptions were met. 

 

Results 

Crop Yield 
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A one-time application of compost was made at rates of 10, 20, 30, and 40 Mg DM ha
-1

 in 2008, 

2009, and 2010.  In addition, four plots never received compost during the three years.  Figure 

1 shows the yield response to compost for the season in which it was applied.   Due to a slight 

slope (0.5%), water (and presumably nutrients) moved toward one end of the field.  This may 

partially explain the unusually high yield at 30 Mg ha
-1

 in 2008, which was at the lowest point of 

the field (plot 121).  Analysis of variance revealed that field position along the slope was a 

significant covariate in 2008 (p = 0.003).  Even with this covariate in the model, plot 121 had 

large influence (Cook’s distance = 0.67 for 16 observations), and thus this data point was 

omitted for a more robust linear analysis.   

 

Figure 1. Yield response to compost during season of application. 

 

As might be expected from visual inspection of Figure 1, ANOVA indicated that the addition 

of compost (ignoring rate) led to a significant yield increase in 2008 (p = 0.002) and 2009 (p = 

0.04), but not in 2010 (p = 0.6).  In 2010 an extreme weather event destroyed most of the 

squash transplants two weeks after planting.  The field was replanted, but this disruption may 

explain the apparent lack of a yield response in 2010.   From Figure 1 it was clear that either a 

Formatted: Font: 12 pt
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quadratic or linear-plateau model was needed to model the yield response to compost rate in 

2008.  The former was chosen because it is amenable to fitting by multiple linear regression.  

Stepwise regression was used to build the regression model with the lowest AIC.  In 2008 both 

Rate and Rate
2
 were included in the final model, while in 2009 the final model included only 

Rate
2
.  The regression coefficients and their standard errors are shown in Supplemental Table 2.  

 Having characterized the first-year yield response to compost, we then examined the 

carryover effect.  Figure 2a compares the 2009 corn grain yield for plots that received compost 

in 2008, those that received compost in 2009, and the four control plots that never received 

compost.   Analysis of variance revealed no significant difference between the 2008 compost 

treatment and the control treatment (p = 0.7).  Thus, although the 2008 compost application 

had a clear effect on the 2008 squash crop, we were unable to detect a carryover effect on the 

2009 corn crop yield.  Figure 2b compares the corn grain yield in 2011 between plots that 

received compost in 2008, 2009, or 2010.  From the figure it appears there was a detectable 

carryover effect relative to the control plots, and the magnitude of this carryover effect did not 

diminish over time.  Analysis of variance confirmed there was no significant effect of the year of 

compost application on the 2011 yield (p > 0.9), and the mean yield of the plots that had 

received compost was 2.3 Mg ha
-1

 greater than the control plots (p = 0.04, one-sided).  

Stepwise regression selected a model with a quadratic dependence on rate, and the results of 

this analysis (Supplemental Table 2) indicates the rate of compost application was detectable in 

the carryover effect in 2011. 
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Figure 2. Carryover effect of compost on corn yield. 

 

Figure 3. Influence of compost rate on soil nitrate. 
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Soil Nitrate and Available Phosphorus 

Soil samples were analyzed for nitrate at day 30 of crop growth in 2009, 2010, and 2011.  Figure 

3 shows soil nitrate concentration in 2009 and 2010 as a function of compost rate, for plots that 

were amended in that same year.   From the figure it appears that nitrate was affected by 

compost rate in 2009 but not in 2010, which was confirmed by regression analysis.  Stepwise 

regression for the 2009 nitrate data resulted in a quadratic model, with regression coefficients 

of 0.37 (SE 0.09, p = 0.002) mg N kg
-1

 ha (Mg DM compost)
-1

 for Rate and -0.006 (SE 0.002, p = 

0.02) mg N kg
-1

 ha
2
 (Mg DM compost)

-2
 for Rate

2
.  Although rate was not significant in 2010, on 

average the plots that received compost in 2010 contained 2.9 mg more nitrate-N kg
-1

 than the 

control treatment (p = 0.04, one-sided, Table 3).  Table 3, which presents the mean nitrate level 

across all compost rates, shows no carryover effect was observed for nitrate levels in 2009 and 

2010. In 2011 a carryover effect was detected, and stepwise regression resulted in a linear rate 

model, with nitrate increasing by 0.07 (SE 0.02, p = 0.008) mg N kg
-1

 for every Mg DM ha
-1

 of 

compost, regardless of its year of application. 

 The Olsen P results, which were only measured in 2011, are shown by year of 

application in Table 4 and by application rate in Table 5. Although there was no consistent 

effect of year, regression analysis confirmed that rate was significant: as 1 Mg DM ha
-1

 of 

compost increased Olsen P by 0.03 (SE 0.01) mg P kg
-1

 (p = 0.007). 

 Finally, we investigated the relationship between crop yield and the soil nutrient 

measurements.  As shown in Figure 4, there was a positive relationship between soil nitrate and 

yield (R
2
 = 0.41, p < 10

-4
), but no significant correlation with Olsen P was observed (p = 0.6). 
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Figure 4. Relationship between 2011 grain yield and soil measurements of nitrate (left panel) 

and Olsen P (right panel). 

 

FT-IR Spectroscopy and SOC 

Absorption spectra for compost and control soil were very different (Figure 5). The 

sharp peak recorded at 1027cm
-1

 (polysaccharides) was only weakly apparent in the bulk soil 

spectra. A broad peak recorded at 1432cm
-1

 (O-H in-plane bend of carboxylic acids, CO2 stretch 

of carboxylates and aliphatic CH2 alkanes, and C-O stretch vibration of carbonates) in the 

compost spectra was also absent in the control soil. Relative absorption of the band in the 

region 1640cm
-1

 (C=O vibration of ketones, quinones, carboxylic acids and esters, as well as C=C 

vibrations of aromatic components) was more pronounced in the compost than in the control 

soil. A weak peak in the region 1508cm
-1

 (vibration of the aromatic skeleton of lignin) was 

evident in the compost and largely absent in the control soil.  The broad absorption band 3200-

Formatted: Font: 12 pt
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3500cm
-1

 (O-H stretching vibrations) displayed a higher relative absorption intensity in the 

compost compared with the control soil. Two peaks superimposed as a shoulder of the broad 

O-H band at 2848cm
-1

 and 2917cm
-1

 (C-H stretch of aliphatic structures) were both absent in 

the control spectra. 

 

Figure 5 FT-IR absorbance spectra of compost and control soil. Compost (blue, top) and control 

(red, bottom) spectra are shown on a common scale and peaks are labeled with their respective 

wavelengths for clarity 

 

 Absorption peaks typical of the compost spectra were evident in compost-treated soils, 

even 3 years after initial application (Figure 6). The pronounced compost polysaccharide peak 

at 1027cm
-1

 was evident in all compost-treated soils and showed reduced intensity as time 

elapsed since treatment increased.  The 2010 treated soil recorded a stronger polysaccharide 
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absorption intensity than both 2009 and 2008-treated soils, which recorded weaker but very 

similar intensities. Absorption in the region of 1440cm
-1

 (carboxylic and carbonyl groups) was 

weaker than compost in the treatment soils, with 2010 and 2008-treated soils showing stronger 

absorption than both 2009 and control soils. The two sharp peaks seen in the region 2900cm
-1

 

(C-H stretch of aliphatic structures) in the compost spectra, were absent in all treated soils. 

 

Figure 6 FT-IR absorbance spectra of treatment and control soils. Soils were amended with 40 

Mg DM ha
-1

 compost in 2010, 2009 and 2008. Spectra are shown on a common scale 

 

Analysis of variance of polysaccharide peak areas determined that the control treatment 

had a significantly reduced polysaccharide peak area than all treatment plots, regardless of 

which year those treatments had been applied (p<0.05) (Supplemental Figure 1). There was no 

difference in peak area between treatment plots, regardless of year applied (p>0.05). Soil 
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organic C was also slightly but significantly increased by the addition of compost although the 

difference between compost applied in 2008 and the control was not significant (2008 

application 1.14 vs 0.93%, p>0.05; 2009 application 1.08 vs 0.93%, p< 0.05; 2010 application 

1.27 vs 0.93%, p< 0.01). 

 

Discussion 

The original goal of the study was to precisely determine compost carryover in terms of 

compost equivalents as described by Endelman et al (2010). However, high experimental error 

prevented the precise determination of the carryover terms (Olsen 2012). Nevertheless, 

regression analysis clearly showed a persistent carryover effect present on yield, soil nitrate and 

Olsen P three years after application, with no evidence of any lessoning of this effect with time 

(Figures 1, 2, and Tables 5 and 6). While the carryover effect on yield and soil nitrate was 

inconsistent in the short term, a clear carryover effect for all years of application emerged in 

the fourth year of the study after the incorporation of hairy vetch into the winter cover crop 

mix. This suggests that both corn and squash were N limited regardless of rate, and that 

supplying extra nitrogen to the rotation in the form of hairy vetch revealed long-term non-

nutritive compost effects or carryover effects of other nutrients such as P.  

Yield Response 

Year-to-year variability was great, possibly due to temperature and moisture variations across 

years as well as differences in compost composition (Tables 2 and 8). In season rate responses 

for both soil nitrate and yield was observed in 2009 but not 2010. Even at the high treatment 

rate (40 Mg DM ha
-1

) maximum yield was not reached for corn, based on county averages. 

Cache County yield averages for corn silage are in the range 18-21 Mg DM ha
-1

 (Griggs et al. 
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2005, 2006; Griggs and Israelsen 2007). Typical yields of summer squash (zucchini) range from 

20.4 Mg ha
-1

 to 37.7 Mg ha
-1

 (Goldy and Wendzel 2009; Gordon et al. 2008). In this study, the 

maximum average yield for corn silage across all compost levels was 13.7 Mg ha
-1

 recorded in 

2008, and the maximum average across all compost levels for squash was 17.2 Mg ha
-1

 

achieved in 2008. The apparent yield plateau at levels below county averages is somewhat 

surprising as a linear yield response to compost might have been expected. Lower soil N was 

observed at the highest compost rate in 2009 and 2010 also, suggesting that the additional C 

applied might have caused immobilization of soil N not seen at lower rates. A linear soil nitrate -

N response was seen in 2011 (Table 3), bolstering this hypothesis. Alternatively, high rates 

could have been toxic to plant growth, perhaps through the addition of salts or organic 

breakdown products. Regardless, compost applied at these rates was insufficient to maximize 

yields in the given crop rotation.  

In the fall of 2010 it was decided to extend the experiment an additional year, and to 

plant a hairy vetch cover crop (Vicia villosa) to overwinter and boost fertility in the spring. A 

well nodulated hairy vetch crop can contribute 67-134 kg ha
-1

 N. Vetch biomass was not 

recorded in 2011 so it is unclear how much N was added to the system upon incorporation. 

However, cover crop biomass collected in 2009 and 2010 showed a linear response to compost 

rate (data not shown), so it is likely that the vetch responded to treatment similarly and 

therefore fixed more N in plots which had previously received higher rates of compost. The 

2011 season showed a marked improvement in corn yields similar to the high yields seen in 

2008.  

Available Soil N  
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Compost at the rates applied did not result in sufficient NO3
-
 mineralization for maximum yields 

to be realized. Over the course of the study, soil NO3
-
 levels were low, and additions of compost 

at any rate did not increase NO3
-
 levels beyond the year of application. In 2011 after 

incorporation of hairy vetch, NO3
- 
levels were higher than those of 2009 or 2010 and showed a 

rate response (Table 3). However, these levels were still below what is typically deemed 

adequate for corn and squash crops. For corn it is generally recommended to apply fertilizer if 

pre-sidedress soil tests show NO3
-
 levels below 25 mg kg

-1
 (Heckman et al. 1995; Zebarth et al. 

2001). Average NO3
-
 levels in our corn plots peaked in 2011 at only 9.98mg kg

-1
. Given these 

levels, a conventional grower would certainly apply N. Davis and Westfall (2009) suggest a 

fertilizer application rate of 151kg ha
-1

 for soil NO3
-
 in this range (7-12mg kg

-1
 NO3

-
 and 1.1-2.0% 

OM).  

Nitrogen mineralization may have also been influenced, to some degree, by the 

maturity and composition of the compost each year, as well as spring-time temperatures and 

moisture. Though the composts used each year were purchased from the same facility, they 

varied somewhat in their chemical composition and degree of maturity (Table 2). The 2010 

compost in particular was lower in total N and much lower in NO3
- 
than the composts of 2008 

and 2009 and had an NH4
+
 content which was considerably higher. These factors may have 

influenced early spring N-mineralization. The cold spring of 2010 (Supplemental Table 3) may 

have slowed nitrification, retaining N in NH4
+
 form.  Brady and Weil (2002) note that ammonia 

volatilization is more pronounced at high pH and where there are high levels of NH4
+
 in the 

system, and as a result ammonium losses from calcareous soils can be quite large.  It is also 

likely that the particularly wet 2010 spring resulted in a significant proportion of soil NO3
-
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leaching and/or undergoing denitrification, and being lost from the soil as NO, N2O, and N2 

gasses. Whatever the cause, it is clear that the crop grown in 2010 was N-deficient.  

Available Soil P 

Phosphorus carryover could explain some of the yield response which occurred in the absence 

of N-carryover. Compost is a significant source of P and composts used in this study contained 

1000 mg Olsen P,  and 1900 and 4400mg kg
-1

 total-P for the years 2008, 2009 and 2010 

respectively (Table 2). Depending on compost rate, P applied per hectare was 10-40kg in 2008, 

19-76 kg in 2009 and 44-176kg in 2010 (note estimated P application for 2008 is likely low as 

Olsen P was measured as opposed to total P). Baseline soil P levels measured in 2007 were very 

low (averaging 5.90 mg kg
-1 

(±0.22), 10 mg kg
-1 

is generally considered adequate soil test P in 

calcareous soils), so it seems likely that additional P to the system would have produced a yield 

response. Nevertheless unlike with nitrate-N there was no relationship between available soil P 

and crop yield suggesting the system was predominantly N limited (Figure 4). Available soil P 

clearly responded to compost additions, however, with the effect of rate more evident than 

year of application. As with nitrogen, differences in compost composition applied each year 

seems to have affected availability of P. 

FT-IR Spectroscopy and SOC 

In addition to nutrient carryover, non-nutritive carryover could also contribute to the yield 

response (Figures 5 and 6). Yield increases ranging from 5 to 25% have been attributed to non-

N sources (Magdoff and Amadon 1980; Schroder and Dilz 1987). Non-nutritive carryover is 

profoundly influenced by SOM. It is clear that despite comprising less than 5% of a typical soil 

(1% or less in this case), SOM exerts a disproportionally large influence on soil properties 
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(Wagner and Wolf 1999). Following compost application, SOM displays enrichment 

corresponding to the original composition of the compost amendment. This enrichment can be 

investigated by measuring changes in gross SOC content but can be investigated in more detail 

using infrared spectroscopy.  

Compost spectra displayed a pronounced polysaccharide peak which was evident in soil 

three years after the year of application. Leifeld et al. (2002) noted that polysaccharides 

present in compost are primarily of plant and microbial origin. Compost polysaccharides can be 

categorized as being either structural or storage in terms of their chemical composition, with 

structural polysaccharides, such as cellulose, being more resistant to decay than storage 

polysaccharides, such as starch. The composition of polysaccharides in our compost was not 

tested, however because it was plant derived it is likely that it contained a large proportion of 

cellulose, and that the more labile polysaccharides were rapidly decomposed within the 

growing season. While cover crops also contain pollyaccharides, the very small peak in control 

soils compared to those that received compost indicates that compost contributed most 

strongly to this peak. 

Since polysaccharides are strongly hydrophilic, their presence in the compost amended 

soils can contribute to the non-nutritive compost carryover effects by enhancing soil-water 

retention (Lowe 1978).  Alternatively polysaccharides may sorb to soil minerals or complex 

humic fractions, thereby reducing SOM decomposition (Lowe 1978). The carbohydrates can 

affect nutrient phytoavailability by complexing micronutrients or by stimulating microbial 

activity to enhance or limit nutrient uptake (Lowe 1978; Ros et al. 2006). 
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Simon (2007) found that soils amended with farm yard manure compost displayed 

increased intensity of FT-IR spectra of both aliphatic and aromatic bands compared with the 

control treatment. FT-IR was used by Gerzabek et al. (1997) to show that peat characteristics 

could be detected in peat treated soils in their long-term field trial. It is clear that compost 

persists in soil many years after incorporation, contributing distinct functional groups to SOM. 

Further work is required, however, to determine where these functional groups are located in 

the soil matrix and how they influence compost decomposition and carryover.  

Compost Carryover and Cropping System Design 

A variable yield response to compost is common, with the result that many growers look on 

compost as a soil conditioner rather than a fertilizer. Applying compost in large quantities on an 

annual basis is a common strategy of organic specialty crop growers while relying on other 

quick release N sources such as bat guano and fish emulsion in the short-term. Other growers, 

particularly those with large acreages of grain crops, question the value of compost, instead 

relying on cover crops or periods of fallow to supply nutrients (Reeve et al. 2012). This has led 

to criticisms of soil mining by extensive organic farmers on the one hand and an over 

application / input substitution approach by specialty crop growers on the other. This study 

suggests, however, that persistent effects of even low applications of compost are important 

and can have a real benefit in terms of yield of both vegetable and field crops for many years. 

Interestingly, the carryover effect was most pronounced in year four of the study after 

incorporation of a nitrogen fixing cover crop.  This suggests that after N limitations were 

ameliorated, other nutritive and non-nutritive effects of compost on yield were expressed. The 
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synergistic effect of compost and cover crops combined in rotation to influence yield even at 

low rates of compost application is important and deserves further study.  

The literature on manure and compost carryover is sparse, especially for soils with low 

native soil organic matter. With carryover effects of one to six years typically reported (Ippolito 

et al. 2010; Nyiraneza et al 2010; McAndrews et al. 2006; Eghball et al. 2004; Mooleki et al 

2004; Lund and Doss 1980), there is growing evidence that the residual effects of compost in 

semi-arid dryland cropping systems is considerably longer (Cogger et al. 2013; Reeve et al. 

2012; Brown et al. 2011; Eck 1988). Brown et al. (2011) showed that carryover effects were 

longer in soils with lower SOM. However, the drawback of many of these studies is that they 

were conducted at disposal rates of application (+200 Mg ha
-1

). In this study we measured 

compost carryover at agronomic rates on a low OM soil for a total of four years, with little 

evidence of a decrease in yield response over time. Breakdown of SOM is typically attributed to 

the rate and quality of the inputs, soil temperature and precipitation regimes, soil structural 

properties and the level of disturbance (Horwath 2007). In arid and semi-arid calcareous soils 

improvements in the availability of P and trace elements due to compost/manure additions 

may also play an important role (Reeve et al. 2012; Braschi et al. 2003; Grossl and Inskeep, 

1991). It is often assumed that compost will persist in soil longer than raw manure due to the 

more recalcitrant nature of the material (Leifeld et al. 2002; Eghball et al. 1997). There is a lack 

of appropriately designed research that adequately tests this hypothesis, and, carryover effects 

have been reported for manure slurry also (Endelman et al. 2010). 

Given the persistent carryover effect, compost applications may not be warranted more 

than every few years in organic cropping systems that rely on N fixing cover crops for the 
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majority of N requirements (Peoples et al. 2009; Peoples et al. 1995). This would provide 

necessary P, K, S and micronutrients to the system, building non-N fertility which also carries 

over in following years. In addition, compost builds SOM, and regular use can lead to greater 

non-nutritive benefits over time. To rely on green manures and cover crops solely, is to neglect 

the nutritive as well as the many non-nutritive benefits for SOM arising from compost use. 

Compost and manure is the most economically viable way to incorporate a wide range of macro 

and micro nutrients in to the soil, and without it growers run the risk of mining their soils of 

these nutrients. 

In addition, our results clearly show that it is not feasible to grow cash crops in rotation 

on low organic matter soils such as those in Utah while relying on compost to supply N needs. 

Ideally, a legume cover crop would be grown each year to fix N and supplement the compost or 

a fertilizer used that is richer in available N such as manure slurry, fish or bat guano products. 

Short growing seasons limit winter cover crop growth in much of the Intermountain West, USA. 

Given that squash requires a shorter growing season than corn, there is opportunity for the 

grower to gain a real benefit from a post-squash winter cover crop, such as hairy vetch, that 

fixes N. Concerns over pathogens limit the use of raw manure in crops with short planting to 

harvest intervals or crops that come in contact with the soil such as vegetables. Other more 

readily available sources of organic N are prohibitively expensive for application to field crops. 

In more intensive cropping systems it may be necessary to incorporate a perennial legume or 

pasture ley phase, relay crop under seeded legumes, or even devote an entire season to cover 

crop production. In an integrated cropping system in Iowa, Davis et al. (2012) showed that N 
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inputs can be reduced by over 80 % when incorporating legumes and manure into an extended 

rotation. 
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Tables and Supplemental Content 

Table 1 Baseline soil properties. Measured (0-30cm) prior to the commencement of the study in 2007 

 

Parameter Soil test value 

Organic Carbon % 1.3 

Total Nitrogen % 0.15 

Phosphorus mg kg
-1

 5.9 

Potassium mg kg
-1

 143 

pH 8.04 

EC µS cm
-1

 296.7 

 

 

 

Table 2 Compost properties. Concentrations reported on a dry weight basis 

 

Property 2008 2009 2010 

 compost compost compost 

Dry matter % 58.0 56.6 58.0 

Total N % 1.9 2.3 1.6 

C:N ratio 11.0 15.6 14.7 

Nitrate N (mg kg
-1

) 1900 256 11 

Ammonium N (mg kg
-1

) 1000 363 1740 

Total P % 

Total K & 

Olsen P (mg kg
-1

) 

- 

- 

1000* 

0.19 

0.86 

- 

0.44 

1.35 

- 

Olsen K (mg kg
-1

) 11,000* - - 

pH 8.0 7.7 9.3 

EC (mS m
-1

) 6.0 6.3 8.7 

• Note that available Olsen P and K is an underestimate of total P. 

 

 

Table 3.  Mean nitrate levels (mg N kg
-1

), as influenced by the year of compost application, with standard 

errors in parentheses. 

 Year of Nitrate Measurement 

Year Compost  

Applied 

2009 2010 2011 

None 3.2
 
(0.8) 6.7 (1.2) 6.8 (1.3) 

2008 3.6
 
(0.5) 6.5 (0.7) 10.7 (0.8) 

2009 7.2
 
(0.4) 7.2 (0.7) 9.8 (0.7) 

2010  9.7 (0.7) 10.5 (0.7) 
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Table 4.  Mean Olsen-P levels in 2011, as influenced by the year of compost application. 

Year Compost  

Applied 

Olsen-P (mg P kg
-1

) 

None 5.6
 
(0.6) 

2008 6.5
 
(0.3) 

2009 5.7
 
(0.3) 

2010 6.5 (0.3) 

 

 

Table 5.  Mean Olsen -P levels in 2011, as influenced by the rate of compost application. 

Compost rate 

(Mg DM ha
-1

) 

Olsen-P 

(mg P kg
-1

) 

0 5.6
 
(0.6) 

10 5.7
 
(0.4) 

20 6.2
 
(0.4) 

30 6.0
 
(0.4) 

40 6.8 (0.4) 
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Figure 1S Polysaccharide IR peak area. Areas of FT-IR spectra for 40 Mg DM ha-1 and control treatments. 

Treatment peak area was significant greater than the control, regardless of which year the compost was 

applied (p<0.05). Error bars indicate ± standard errors 

Table 1S Crop management dates 

 

 2008 2009 2010 2011 

Compost Applied May 15 May 28 May 27 - 

Squash Transplant June 15 - June 8* - 

Squash First Harvest July 3 - Aug 5 - 

Corn Planting - June 13 - June 1 

Corn Harvest - Sept 22 - Sept 8 

*Squash was replanted (direct seeded) on June 15. 

 

Table 2S Regression model for yield response to compost rate 

Year Model term  Estimate (SE) Units  p-value (estimate 

= 0) 

2008¶ Rate  0.52 (0.17) Mg squash (Mg DM compost)
-1

 0.01 

 Rate
2
 -0.010 (0.004) Mg squash * ha (Mg DM compost)

-2
 0.04 

2009¶ Rate
2
 3.8 (0.6) kg grain * ha (Mg DM compost)

-2
 < 10

-4
 

2011‡ Rate
2
 1.1 (0.5) kg grain * ha (Mg DM compost)

-2
 0.04 

¶ Models the yield response of the crop to which compost was applied. 

‡ Models the carryover effect of the compost, regardless of its year of application. 

B 

A 

A 

A 
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Table 3S Summary of climate data by month and year. Data sourced from the Utah Climate Center, USU 

Weather Station. Standard errors (±) for averaged data are reported 

Month and  Maximum Temp. Minimum Temp. Precipitation Snow fall 

Year Average (C) Average (C) Total (cm) Total (cm) 

     

April     

2008 11.0 (±1.1) -1.7 (±0.7) 2.3 6.6  

2009 12.5 (±1.1) 1.6 (±0.6) 7.7  20.3  

2010 12.8 (±1.2) 1.5 (±0.8) 6.2  52.3  

2011 10.2 (±0.8) 0.3 (±0.5) 11.2 22.8 

     

May     

2008 17.3 (±1.1) 5.0 (±0.7) 6.2  3.8  

2009 20.1 (±0.9) 7.1 (±0.7) 4.5 0 

2010 14.3 (±0.9) 3.6 (±0.7) 8.2  5.8  

2011 14.7(±0.9) 4.4 (±0.5) 13.8 1.3 

     

June     

2008 24.5 (±1.3) 10.2 (±0.8) 2.4 0 

2009 22.6 (±0.8) 10.9 (±0.4) 8.6 0 

2010 23.5 (±1.0) 10.7 (±0.6) 3.5 0 

2011 23.5 (±0.9) 9.8 (±0.7) 2.5 0 

Utah State University- Utah Climate Center:  http://climate.usurf.usu.edu/# 

 

 

 

 

 


