104 research outputs found

    Earthquake damage on the vaulted nave of the Atlatlahucan Ex-Convent church in Morelos, Mexico

    Get PDF
    The State of Morelos, in Mexico, has an architectural heritage conformed by 4614 religious and civil buildings, many of which were severely affected by the earthquake that occurred on September 19, 2017, which also caused damages to the built heritage in the states of Puebla, Tlaxcala, Mexico and Mexico City. A total of about 2800 heritage buildings suffered different damages degrees, reaching in many cases the collapse of elements such as vaults, domes, bell towers as well as their cloisters. The Ex-Convent of San Mateo in Atlatlahucan, Morelos, suffered damages on its main nave, in the pinnacles on the longitudinal side walls as well as in the clock box located on the front façade. In the present work, an analysis is made of the damages observed in the building, as well as a preliminary analytical diagnosis of the behavior of the main nave in order to propose future reinforcement actions for the building

    Combination of qualitative and quantitative methods for developing a new Health Related Quality of Life measure for patients with anogenital warts

    Get PDF
    BACKGROUND: Anogenital warts are the most easily recognized sign of genital Human Papilloma Virus infection. The objective was to develop a short, valid and reliable questionnaire to measure Health Related Quality of Life (HRQL) in patients with anogenital warts. METHODS: First a literature review was performed to identify relevant papers describing the impact of anogenital warts in HRQL; second the main domains were identified by some experts in a focus group, and third in-depth-semi-structured interviews were conducted in patients with anogenital warts to identify the initial set of items. A qualitative reduction of the initial set of items was performed based on the mean scoring of the experts for the three scales: clarity, frequency and importance. The initial questionnaire was pilot tested in 135 patients. Rasch analysis was performed with the results of the questionnaire in order to refine the instrument. Spearman's correlation was calculated between the initial questionnaire and the reduced version. Additionally the measurement properties (validity and reliability) of the resulting final questionnaire were tested and compared using standard procedures (Cronbach's Alpha and item-total correlation). RESULTS: the main domains identified as affected in patient's life were: sexual, colleagues and partner relationships. After a proper qualitative reduction the initial set of 134 items was reduced to 22. The questionnaire was pilot tested in 135 patients and two dimensions were identified after the multifactorial analysis: emotional dimension and sexual activity dimension. As a result of the Rasch analysis the questionnaire was reduced to 10 items. High correlation was found between the initial and the reduced version for the two dimensions. Cronbach's alpha values were acceptable (0.86). CONCLUSION: The initial 22 items questionnaire was reduced by Rasch analysis to a version of 10 items, with two dimensions: emotional and sexual. The results suggest the adequacy of the 10 items to evaluate HRQL of patients with anogenital warts in a valid and reliable way

    Perhalophenyl Three-Coordinate Gold(I) Complexes as TADF Emitters : A Photophysical Study from Experimental and Computational Viewpoints

    Get PDF
    We report the synthesis of novel perhalophenyl three- coordinated gold( I) complexes using 1,2- bis-(diphenylphosphino)benzene (dppBz) as the chelating ligand and [AuR(tht)] (R = C6F5, C6Cl2F3, C6Cl5) as the perhalophenyl-gold(I) source, leading to [AuR(dppBz)] (R = C6F5 (1), C6Cl2F3 (2), C6Cl5 (3)) complexes. The solid-state structures of compounds 2 and 3 consist of discrete three-coordinated Au(I) complexes, which show a distorted trigonal planar geometry for the gold center with dissimilar Au-P distances. The distorted structural arrangement is closely related to its photophysical properties. The studied complexes display very intense emissions at room temperature (RT) and at 77 K in the solid state. Studies of the emissive properties of the complexes at different temperatures suggest that the emissions are phosphorescent at 77 K and exhibit thermally activated delayed fluorescence (TADF) at RT. First-principle calculations of the photophysical processes yielded rate constants for intersystem crossing and reverse intersystem crossing that are in excellent agreement with experimental data.Peer reviewe

    Mini AuAg Wavy Nanorods Displaying Plasmon-Induced Photothermal and Photocatalytic Properties

    Get PDF
    Alloyed AuAg wavy nanorods (wNRs) of approximate to 24.0 nm length and 3.5 nm width are formed by the mild decomposition of the organometallic complex [Au2Ag2(C6F5)(4)(OEt2)(2)](n) in tetrahydrofuran (THF) in the presence of oleic acid. Ligand exchange with l-glutathione (GSH) or poly(ethylene glycol) methyl ether thiol (PEG-SH) leads to water-soluble nanostructures. These AuAg wNRs display tunable size-dependent longitudinal localized surface plasmon resonance (l-LSPR) broad absorptions beyond 750 nm in the near-infrared (NIR) I and II regions. These intense plasmonic absorptions lead to interesting photothermal, catalytic, and photocatalytic properties, including the catalytic reduction of 4-nitrophenol, the photocatalytic reduction of 4-nitrostyrene, or the photocatalytic dehydrogenation of ammonia borane for H-2 release

    Influence of perhalophenyl groups in the TADF mechanism of diphosphino gold(I) complexes

    Get PDF
    New perhalophenyl three-coordinated gold(i) complexes using the chelate ligand 1,2-bis(diphenyl-phosphino)benzene (dppBz) and [AuR(tht)] (R = C6F5 (1), o-C6BrF4 (2), p-C6BrF4 (3), o-C6F4I (4), p-C6F4I (5); tht = tetrahydrothiophene) have been prepared. The crystal structures of compounds 1 and 2 consist of distorted three-coordinated Au(i) complexes displaying different Au-P distances at the same gold atom. The complexes show intense photoluminescent emission in the solid state at room temperature (RT) and at 77 K. The study of the dependence of the emission lifetime with temperature suggests the existence of thermally activated delayed fluorescence (TADF) processes at RT. We have computed the rate constants for intersystem crossing and reverse intersystem crossing of the photophysical processes through first-principle calculations, supporting the experimental observations with very good agreement.Peer reviewe

    Differential effect of vascularity between long- and short-term survivors with IDH1/2 wild-type glioblastoma

    Full text link
    [EN] Introduction: IDH1/2 wt glioblastoma (GB) represents the most lethal tumour of the central nervous system. Tumour vascularity is associated with overall survival (OS), and the clinical relevance of vascular markers, such as rCBV, has already been validated. Nevertheless, molecular and clinical factors may have different influences on the beneficial effect of a favourable vascular signature. Purpose: To evaluate the association between the rCBV and OS of IDH1/2 wt GB patients for long-term survivors (LTSs) and short-term survivors (STSs). Given that initial high rCBV may affect the patient's OS in follow-up stages, we will assess whether a moderate vascularity is beneficial for OS in both groups of patients. Materials and methods: Ninety-nine IDH1/2 wt GB patients were divided into LTSs (OS >= 400 days) and STSs (OS < 400 days). Mann-Whitney and Fisher, uni- and multiparametric Cox, Aalen's additive regression and Kaplan-Meier tests were carried out. Tumour vascularity was represented by the mean rCBV of the high angiogenic tumour (HAT) habitat computed through the haemodynamic tissue signature methodology (available on the ONCOhabitats platform). Results: For LTSs, we found a significant association between a moderate value of rCBV(mean) and higher OS (uni- and multiparametric Cox and Aalen's regression) (p = 0.0140, HR = 1.19; p = 0.0085, HR = 1.22) and significant stratification capability (p = 0.0343). For the STS group, no association between rCBV(mean) and survival was observed. Moreover, no significant differences (p > 0.05) in gender, age, resection status, chemoradiation, or MGMT methylation were observed between LTSs and STSs. Conclusion: We have found different prognostic and stratification effects of the vascular marker for the LTS and STS groups. We propose the use of rCBV(mean) at HAT as a vascular marker clinically relevant for LTSs with IDH1/2 wt GB and maybe as a potential target for randomized clinical trials focused on this group of patients.DPI2016-80054-R (Programa Estatal de Promocion del Talento y su Empleabilidad en I +D+i).; European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 844646; H2020-SC1-BHC-2018-2020 (No. 825750); MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R); European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie, Grant/Award Number: 844646; Research Council of Norway, Grant/Award Number: 261984; South-Eastern Norway Regional Health Authority, Grant/Award Number: 2017073; European Research Council (ERC) under the European Union's Horizon 2020, Grant/Award Number: 758657Álvarez-Torres, MDM.; Fuster García, E.; Reynes, G.; Juan-Albarracín, J.; Chelebian-Kocharyan, EA.; Oleaga, L.; Pineda, J.... (2021). Differential effect of vascularity between long- and short-term survivors with IDH1/2 wild-type glioblastoma. NMR in Biomedicine. 34(4):1-11. https://doi.org/10.1002/nbm.446211134

    MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas

    Full text link
    [EN] Objectives To assess the combined role of tumor vascularity, estimated from perfusion MRI, andMGMTmethylation status on overall survival (OS) in patients with glioblastoma. Methods A multicentric international dataset including 96 patients from NCT03439332 clinical study were used to study the prognostic relationships betweenMGMTand perfusion markers. Relative cerebral blood volume (rCBV) in the most vascularized tumor regions was automatically obtained from preoperative MRIs using ONCOhabitats online analysis service. Cox survival regression models and stratification strategies were conducted to define a subpopulation that is particularly favored byMGMTmethylation in terms of OS. Results rCBV distributions did not differ significantly (p > 0.05) in the methylated and the non-methylated subpopulations. In patients with moderately vascularized tumors (rCBV 10.73), however, there was no significant effect ofMGMTmethylation (HR = 1.72,p = 0.10, AUC = 0.56). Conclusions Our results indicate the existence of complementary prognostic information provided byMGMTmethylation and rCBV. Perfusion markers could identify a subpopulation of patients who will benefit the most fromMGMTmethylation. Not considering this information may lead to bias in the interpretation of clinical studies.Open Access funding provided by University of Oslo (incl Oslo University Hospital). This study has received funding from MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R) (JMGG); H2020-SC12016-CNECT Project (No. 727560) (JMGG), H2020-SC1-BHC-20182020 (No. 825750) (JMGG), the European Research Council (ERC) under the European Union's Horizon 2020 (Grant Agreement No. 758657), the South-Eastern Norway Regional Health Authority Grants 2017073 and 2013069, the Research Council of Norway Grants 261984 (KEE). M.A.T was supported by Programa Estatal de Promocion del Talento y su Empleabilidad en I+D+i (DPI2016-80054-R). E.F.G was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement (No. 844646).Fuster García, E.; Lorente Estellés, D.; Álvarez-Torres, MDM.; Juan-Albarracín, J.; Chelebian-Kocharyan, EA.; Rovira, A.; Auger Acosta, C.... (2021). MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas. European Radiology. 31(3):1738-1747. https://doi.org/10.1007/s00330-020-07297-41738174731

    Robust association between vascular habitats and patient prognosis in glioblastoma: an international retrospective multicenter study

    Full text link
    This is the peer reviewed version of the following article: del Mar Álvarez-Torres, M., Juan-Albarracín, J., Fuster-Garcia, E., Bellvís-Bataller, F., Lorente, D., Reynés, G., Font de Mora, J., Aparici-Robles, F., Botella, C., Muñoz-Langa, J., Faubel, R., Asensio-Cuesta, S., García-Ferrando, G.A., Chelebian, E., Auger, C., Pineda, J., Rovira, A., Oleaga, L., Mollà-Olmos, E., Revert, A.J., Tshibanda, L., Crisi, G., Emblem, K.E., Martin, D., Due-Tønnessen, P., Meling, T.R., Filice, S., Sáez, C. and García-Gómez, J.M. (2020), Robust association between vascular habitats and patient prognosis in glioblastoma: An international multicenter study. J Magn Reson Imaging, 51: 1478-1486, which has been published in final form at https://doi.org/10.1002/jmri.26958. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Background Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE). Purpose To validate the association between hemodynamic markers from vascular habitats and overall survival (OS) in glioblastoma patients, considering the intercenter variability of acquisition protocols. Study Type Multicenter retrospective study. Population In all, 184 glioblastoma patients from seven European centers participating in the NCT03439332 clinical study. Field Strength/Sequence 1.5T (for 54 patients) or 3.0T (for 130 patients). Pregadolinium and postgadolinium-based contrast agent-enhanced T-1-weighted MRI, T-2- and FLAIR T-2-weighted, and dynamic susceptibility contrast (DSC) T-2* perfusion. Assessment We analyzed preoperative MRIs to establish the association between the maximum relative cerebral blood volume (rCBV(max)) at each habitat with OS. Moreover, the stratification capabilities of the markers to divide patients into "vascular" groups were tested. The variability in the markers between individual centers was also assessed. Statistical Tests Uniparametric Cox regression; Kaplan-Meier test; Mann-Whitney test. Results The rCBV(max) derived from the HAT, LAT, and IPE habitats were significantly associated with patient OS (P < 0.05; hazard ratio [HR]: 1.05, 1.11, 1.28, respectively). Moreover, these markers can stratify patients into "moderate-" and "high-vascular" groups (P < 0.05). The Mann-Whitney test did not find significant differences among most of the centers in markers (HAT: P = 0.02-0.685; LAT: P = 0.010-0.769; IPE: P = 0.093-0.939; VPE: P = 0.016-1.000). Data Conclusion The rCBV(max) calculated in HAT, LAT, and IPE habitats have been validated as clinically relevant prognostic biomarkers for glioblastoma patients in the pretreatment stage. This study demonstrates the robustness of the hemodynamic tissue signature (HTS) habitats to assess the GBM vascular heterogeneity and their association with patient prognosis independently of intercenter variability. Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019.This work was partially supported by: MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R) (to J.M.G.G.); H2020-SC1-2016-CNECT Project (No. 727560) (to J.M.G.G.) and H2020-SC1-BHC-2018-2020 (No. 825750) (to J.M.G.G.); M.A.T was supported by DPI2016-80054-R (Programa Estatal de Promocion del Talento y su Empleabilidad en I + D + i). The data acquisition and curation of the Oslo University Hospital was supported by: the European Research Council (ERC) under the European Union's Horizon 2020 (Grant Agreement No. 758657), the South-Eastern Norway Regional Health Authority Grants 2017073 and 2013069, and the Research Council of Norway Grants 261984 (to K.E.E.). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. E.F.G. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 844646. Figure 1 was designed by the Science Artist Elena Poritskaya.Álvarez-Torres, MDM.; Juan-Albarracín, J.; Fuster García, E.; Bellvís-Bataller, F.; Lorente, D.; Reynés, G.; Font De Mora, J.... (2020). Robust association between vascular habitats and patient prognosis in glioblastoma: an international retrospective multicenter study. Journal of Magnetic Resonance Imaging. 51(5):1478-1486. https://doi.org/10.1002/jmri.2695814781486515Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., … Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 131(6), 803-820. doi:10.1007/s00401-016-1545-1Gately, L., McLachlan, S., Dowling, A., & Philip, J. (2017). Life beyond a diagnosis of glioblastoma: a systematic review of the literature. Journal of Cancer Survivorship, 11(4), 447-452. doi:10.1007/s11764-017-0602-7Bae, S., Choi, Y. S., Ahn, S. S., Chang, J. H., Kang, S.-G., Kim, E. H., … Lee, S.-K. (2018). Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology, 289(3), 797-806. doi:10.1148/radiol.2018180200Akbari, H., Macyszyn, L., Da, X., Wolf, R. L., Bilello, M., Verma, R., … Davatzikos, C. (2014). Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity. Radiology, 273(2), 502-510. doi:10.1148/radiol.14132458Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nature Medicine, 17(11), 1359-1370. doi:10.1038/nm.2537De Palma, M., Biziato, D., & Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer, 17(8), 457-474. doi:10.1038/nrc.2017.51Jain, R., Poisson, L. M., Gutman, D., Scarpace, L., Hwang, S. N., Holder, C. A., … Flanders, A. (2014). Outcome Prediction in Patients with Glioblastoma by Using Imaging, Clinical, and Genomic Biomarkers: Focus on the Nonenhancing Component of the Tumor. Radiology, 272(2), 484-493. doi:10.1148/radiol.14131691Jensen, R. L., Mumert, M. L., Gillespie, D. L., Kinney, A. Y., Schabel, M. C., & Salzman, K. L. (2013). Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro-Oncology, 16(2), 280-291. doi:10.1093/neuonc/not148Jena, A., Taneja, S., Gambhir, A., Mishra, A. K., D’souza, M. M., Verma, S. M., … Sogani, S. K. (2016). Glioma Recurrence Versus Radiation Necrosis. Clinical Nuclear Medicine, 41(5), e228-e236. doi:10.1097/rlu.0000000000001152Price, S. J., Young, A. M. H., Scotton, W. J., Ching, J., Mohsen, L. A., Boonzaier, N. R., … Larkin, T. J. (2015). Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. Journal of Magnetic Resonance Imaging, 43(2), 487-494. doi:10.1002/jmri.24996Chang, Y.-C. C., Ackerstaff, E., Tschudi, Y., Jimenez, B., Foltz, W., Fisher, C., … Stoyanova, R. (2017). Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI. Scientific Reports, 7(1). doi:10.1038/s41598-017-09932-5Cui, Y., Tha, K. K., Terasaka, S., Yamaguchi, S., Wang, J., Kudo, K., … Li, R. (2016). Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Radiology, 278(2), 546-553. doi:10.1148/radiol.2015150358Juan-Albarracín, J., Fuster-Garcia, E., Pérez-Girbés, A., Aparici-Robles, F., Alberich-Bayarri, Á., Revert-Ventura, A., … García-Gómez, J. M. (2018). Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival. Radiology, 287(3), 944-954. doi:10.1148/radiol.2017170845Fuster-Garcia, E., Juan-Albarracín, J., García-Ferrando, G. A., Martí-Bonmatí, L., Aparici-Robles, F., & García-Gómez, J. M. (2018). Improving the estimation of prognosis for glioblastoma patients by MR based hemodynamic tissue signatures. NMR in Biomedicine, 31(12), e4006. doi:10.1002/nbm.4006Abramson, R. G., Burton, K. R., Yu, J.-P. J., Scalzetti, E. M., Yankeelov, T. E., Rosenkrantz, A. B., … Subramaniam, R. M. (2015). Methods and Challenges in Quantitative Imaging Biomarker Development. Academic Radiology, 22(1), 25-32. doi:10.1016/j.acra.2014.09.001Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., … Mirimanoff, R. O. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352(10), 987-996. doi:10.1056/nejmoa043330Wetzel, S. G., Cha, S., Johnson, G., Lee, P., Law, M., Kasow, D. L., … Xue, X. (2002). Relative Cerebral Blood Volume Measurements in Intracranial Mass Lesions: Interobserver and Intraobserver Reproducibility Study. Radiology, 224(3), 797-803. doi:10.1148/radiol.2243011014Schnack, H. G., van Haren, N. E. M., Hulshoff Pol, H. E., Picchioni, M., Weisbrod, M., Sauer, H., … Kahn, R. S. (2004). Reliability of brain volumes from multicenter MRI acquisition: A calibration study. Human Brain Mapping, 22(4), 312-320. doi:10.1002/hbm.20040De Guio, F., Jouvent, E., Biessels, G. J., Black, S. E., Brayne, C., Chen, C., … Chabriat, H. (2016). Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow & Metabolism, 36(8), 1319-1337. doi:10.1177/0271678x16647396Hirai, T., Murakami, R., Nakamura, H., Kitajima, M., Fukuoka, H., Sasao, A., … Yamashita, Y. (2008). Prognostic Value of Perfusion MR Imaging of High-Grade Astrocytomas: Long-Term Follow-Up Study. American Journal of Neuroradiology, 29(8), 1505-1510. doi:10.3174/ajnr.a1121Sawlani, R. N., Raizer, J., Horowitz, S. W., Shin, W., Grimm, S. A., Chandler, J. P., … Carroll, T. J. (2010). Glioblastoma: A Method for Predicting Response to Antiangiogenic Chemotherapy by Using MR Perfusion Imaging—Pilot Study. Radiology, 255(2), 622-628. doi:10.1148/radiol.10091341Hambardzumyan, D., & Bergers, G. (2015). Glioblastoma: Defining Tumor Niches. Trends in Cancer, 1(4), 252-265. doi:10.1016/j.trecan.2015.10.009Artzi, M., Bokstein, F., Blumenthal, D. T., Aizenstein, O., Liberman, G., Corn, B. W., & Ben Bashat, D. (2014). Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: A longitudinal MRI study. European Journal of Radiology, 83(7), 1250-1256. doi:10.1016/j.ejrad.2014.03.02
    corecore