756 research outputs found

    The structure of molecular clumps around high-mass young stellar objects

    Full text link
    We have used the IRAM 30-m and FCRAO 14-m telescopes to observe the molecular clumps associated with 12 ultracompact (UC) HII regions in the J=6-5, 8-7 and 13-12 rotational transitions of methyl-acetylene (CH3C2H). Under the assumption of LTE and optically thin emission, we have derived temperature estimates ranging from 30 to 56 K. We estimate that the clumps have diameters of 0.2-1.6 pc, H_2 densities of 10^5-10^6 {cm^{-3}}, and masses of 10^2-2 10^4 M_\odot. We compare these values with those obtained by other authors from different molecular tracers and find that the H_2 density and the temperature inside the clumps vary respectively like n_{H_2} ~ R^{-2.6} and T ~ R^{-0.5}, with R distance from the centre. We also find that the virial masses of the clumps are ~3 times less than those derived from the CH3C2H column densities: we show that a plausible explanation is that magnetic fields play an important role to stabilise the clumps, which are on the verge of gravitational collapse. Finally, we show that the CH3C2H line width increases for decreasing distance from the clump centre: this effect is consistent with infall in the inner regions of the clumps. We conclude that the clumps around UC HII regions are likely to be transient (~10^(5) yr) entities, remnants of isothermal spheres currently undergoing gravitational collapse: the high mass accretion rates (~10^{-2} M_\odot yr^{-1}) lead to massive star formation at the centre of such clumps.Comment: 15 pages, 11 figures, A & A in pres

    A spectral line survey of the starless and proto-stellar cores detected by BLAST toward the Vela-D molecular cloud

    Full text link
    We present a 3-mm and 1.3-cm spectral line survey conducted with the Mopra 22-m and Parkes 64-m radio telescopes of a sample of 40 cold dust cores, previously observed with BLAST, including both starless and proto-stellar sources. 20 objects were also mapped using molecular tracers of dense gas. To trace the dense gas we used the molecular species NH3, N2H+, HNC, HCO+, H13CO+, HCN and H13CN, where some of them trace the more quiescent gas, while others are sensitive to more dynamical processes. The selected cores have a wide variety of morphological types and also show physical and chemical variations, which may be associated to different evolutionary phases. We find evidence of systematic motions in both starless and proto-stellar cores and we detect line wings in many of the proto-stellar cores. Our observations probe linear distances in the sources >~0.1pc, and are thus sensitive mainly to molecular gas in the envelope of the cores. In this region we do find that, for example, the radial profile of the N2H+(1-0) emission falls off more quickly than that of C-bearing molecules such as HNC(1-0), HCO+(1-0) and HCN(1-0). We also analyze the correlation between several physical and chemical parameters and the dynamics of the cores. Depending on the assumptions made to estimate the virial mass, we find that many starless cores have masses below the self-gravitating threshold, whereas most of the proto-stellar cores have masses which are near or above the self-gravitating critical value. An analysis of the median properties of the starless and proto-stellar cores suggests that the transition from the pre- to the proto-stellar phase is relatively fast, leaving the core envelopes with almost unchanged physical parameters.Comment: Submitted for publication to Astronomy & Astrophysics on January 18th, 201

    Reverberation of pulsar wind nebulae (III): Modelling of the plasma interface empowering a long term radiative evolution

    Full text link
    The vast majority of Pulsar Wind Nebulae (PWNe) present in the Galaxy is formed by middle-aged systems characterized by a strong interaction of the PWN itself with the supernova remnant (SNR). Unfortunately, modelling these systems can be quite complex and numerically expensive, due to the non-linearity of the PWN-SNR evolution even in the simple 1D / one-zone case when the reverse shock of the SNR reaches the PWN, and the two begin to interact (and reverberation starts). Here we introduce a new numerical technique that couples the numerical efficiency of the one-zone thin shell approach with the reliability of a full ``lagrangian'' evolution, able to correctly reproduce the PWN-SNR interaction during the reverberation and to consistently evolve the particle spectrum beyond. Based on our previous findings, we show that our novel strategy resolves many of the uncertainties present in previous approaches, as the arbitrariness in the SNR structure, and ensure a robust evolution, compatible with results that can be obtained with more complex 1D dynamical approaches. Our approach enable us for the first time to provide reliable spectral models of the later compression phases in the evolution of PWNe. While in general we found that the compression is less extreme than that obtained without such detailed dynamical considerations, leading to the formation of less structured spectral energy distributions, we still find that a non negligible fraction of PWNe might experience a super-efficient phase, with the optical and/or X-ray luminosity exceeding the spin-down one.Comment: 12 pages, 2 tables, 5 figure

    Spitzer-IRAC survey of molecular jets in Vela-D

    Full text link
    We present a survey of H2 jets from young protostars in the Vela-D molecular cloud (VMR-D), based on Spitzer -IRAC data between 3.6 and 8.0 micron. Our search has led to the identification of 15 jets and about 70 well aligned knots within 1.2 squared degree. We compare the IRAC maps with observations of the H2 1-0 S(1) line at 2.12 micron, with a Spitzer-MIPS map at 24 and 70 micron, and with a map of the dust continuum emission at 1.2 mm. We find a association between molecular jets and dust peaks. The jet candidate exciting sources have been searched for in the published catalog of the Young Stellar Objects of VMR-D. We selected all the sources of Class II or earlier which are located close to the jet center and aligned with it.The association between jet and exciting source was validated by estimating the differential extinction between the jet opposite lobes. We are able to find a best-candidate exciting source in all but two jets. Four exciting sources are not (or very barely) observed at wavelengths shorter than 24 micron, suggesting they are very young protostars. Three of them are also associated with the most compact jets. The exciting source Spectral Energy Distributions have been modeled by means of the photometric data between 1.2 micron and 1.2 mm. From SEDs fits we derive the main source parameters, which indicate that most of them are low-mass protostars. A significant correlation is found between the projected jet length and the [24] - [70] color, which is consistent with an evolutionary scenario according to which shorter jets are associated with younger sources. A rough correlation is found between IRAC line cooling and exciting source bolometric luminosity, in agreement with the previous literature. The emerging trend suggests that mass loss and mass accretion are tightly related phenomena and that both decrease with time.Comment: Accepted by The Astrophysical Journa

    A New Galactic 6cm Formaldehyde Maser

    Full text link
    We report the detection of a new H2CO maser in the massive star forming region G23.71-0.20 (IRAS 18324-0820), i.e., the fifth region in the Galaxy where H2CO maser emission has been found. The new H2CO maser is located toward a compact HII region, and is coincident in velocity and position with 6.7 GHz methanol masers and with an IR source as revealed by Spitzer/IRAC GLIMPSE data. The coincidence with an IR source and 6.7 GHz methanol masers suggests that the maser is in close proximity to an embedded massive protostar. Thus, the detection of H2CO maser emission toward G23.71-0.20 supports the trend that H2CO 6cm masers trace molecular material very near young massive stellar objects.Comment: Accepted for publication in The Astrophysical Journal Letter

    Reverberation of pulsar wind nebulae (I): Impact of the medium properties and other parameters upon the extent of the compression

    Full text link
    The standard approach to the long term evolution of pulsar wind nebulae (PWNe) is based on one-zone models treating the nebula as a uniform system. In particular for the late phase of evolved systems, many of the generally used prescriptions are based on educated guesses for which a proper assessment lacks. Using an advanced radiative code we evaluate the systematic impact of various parameters, like the properties of the supernova ejecta, of the inner pulsar, as well of the ambient medium, upon the extent of the reverberation phase of PWNe. We investigate how different prescriptions shift the starting time of the reverberation phase, how this affects the amount of the compression, and how much of this can be ascribable to the radiation processes. Some critical aspects are the description of the reverse shock evolution, the efficiency by which at later times material from the ejecta accretes onto the swept-up shell around the PWN, and finally the density, velocity and pressure profiles in the surrounding supernova remnant. We have explicitly treated the cases of the Crab Nebula, and of J1834.9--0846, taken to be representatives of the more and the less energetic pulsars, respectively. Especially for the latter object the prediction of large compression factors is confirmed, even larger in the presence of radiative losses, also confirming our former prediction of periods of super-efficiency during the reverberation phase of some PWNe.Comment: 12 pages, 7 figures, accepted for publication in MNRA
    corecore