144 research outputs found

    Methods for a quantitative evaluation of odd-even staggering effects

    Full text link
    Odd-even effects, also known as "staggering" effects, are a common feature observed in the yield distributions of fragments produced in different types of nuclear reactions. We review old methods, and we propose new ones, for a quantitative estimation of these effects as a function of proton or neutron number of the reaction products. All methods are compared on the basis of Monte Carlo simulations. We find that some are not well suited for the task, the most reliable ones being those based either on a non-linear fit with a properly oscillating function or on a third (or fourth) finite difference approach. In any case, high statistic is of paramount importance to avoid that spurious structures appear just because of statistical fluctuations in the data and of strong correlations among the yields of neighboring fragments.Comment: 16 pages, 9 figures - Revised version, mainly with an expanded sect. 2 about smoothing methods (three more methods are presented and an appendix on relevant aspects of the finite-differences formalism is added); results are shown also for the simulations with the three additional methods. Some more references are added. Conclusions are unchange

    Chimera states in pulse coupled neural networks: the influence of dilution and noise

    Get PDF
    We analyse the possible dynamical states emerging for two symmetrically pulse coupled populations of leaky integrate-and-fire neurons. In particular, we observe broken symmetry states in this set-up: namely, breathing chimeras, where one population is fully synchronized and the other is in a state of partial synchronization (PS) as well as generalized chimera states, where both populations are in PS, but with different levels of synchronization. Symmetric macroscopic states are also present, ranging from quasi-periodic motions, to collective chaos, from splay states to population anti-phase partial synchronization. We then investigate the influence disorder, random link removal or noise, on the dynamics of collective solutions in this model. As a result, we observe that broken symmetry chimera-like states, with both populations partially synchronized, persist up to 80 \% of broken links and up to noise amplitudes 8 \% of threshold-reset distance. Furthermore, the introduction of disorder on symmetric chaotic state has a constructive effect, namely to induce the emergence of chimera-like states at intermediate dilution or noise level.Comment: 15 pages, 7 figure, contribution for the Workshop "Nonlinear Dynamics in Computational Neuroscience: from Physics and Biology to ICT" held in Turin (Italy) in September 201

    Coherent periodic activity in excitatory Erdos-Renyi neural networks:The role of network connectivity

    Get PDF
    We consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erd\"os-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ\gamma, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level we observe two distinct dynamical phases: an Asynchronous State (AS) corresponding to a desynchronized dynamics of the neurons and a Partial Synchronization (PS) regime associated with a coherent periodic activity of the network. At low connectivity the system is in an AS, while PS emerges above a certain critical average connectivity c_c. For sufficiently large networks, c_c saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous fully connected network for any γ\gamma-value. Apart for the peculiar exception of sparse networks, which remain intrinsically inhomogeneous at any system size.Comment: 7 pages, 11 figures, submitted to Chao

    Linear stability in networks of pulse-coupled neurons

    Full text link
    In a first step towards the comprehension of neural activity, one should focus on the stability of the various dynamical states. Even the characterization of idealized regimes, such as a perfectly periodic spiking activity, reveals unexpected difficulties. In this paper we discuss a general approach to linear stability of pulse-coupled neural networks for generic phase-response curves and post-synaptic response functions. In particular, we present: (i) a mean-field approach developed under the hypothesis of an infinite network and small synaptic conductances; (ii) a "microscopic" approach which applies to finite but large networks. As a result, we find that no matter how large is a neural network, its response to most of the perturbations depends on the system size. There exists, however, also a second class of perturbations, whose evolution typically covers an increasingly wide range of time scales. The analysis of perfectly regular, asynchronous, states reveals that their stability depends crucially on the smoothness of both the phase-response curve and the transmitted post-synaptic pulse. The general validity of this scenarion is confirmed by numerical simulations of systems that are not amenable to a perturbative approach.Comment: 13 pages, 7 figures, submitted to Frontiers in Computational Neuroscienc

    Stability of the splay state in networks of pulse-coupled neurons

    Get PDF
    We analytically investigate the stability of {\it splay states} in networks of NN pulse-coupled phase-like models of neurons. By developing a perturbative technique, we find that, in the limit of large NN, the Floquet spectrum scales as 1/N21/N^2 for generic discontinuous velocity fields. Moreover, the stability of the so-called short-wavelength component is determined by the sign of the jump at the discontinuity. Altogether, the form of the spectrum depends on the pulse shape but is independent of the velocity field.Comment: 22 pages, no figures and 120 equation

    Intermittent chaotic chimeras for coupled rotators

    Full text link
    Two symmetrically coupled populations of N oscillators with inertia mm display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendula. In particular, we report the first evidence of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between laminar and turbulent phases. These states have finite life-times diverging as a power-law with N and m. Lyapunov analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled dissipative systems.Comment: 6 pages, 5 figures SUbmitted to Physical Review E, as Rapid Communicatio

    Exact firing time statistics of neurons driven by discrete inhibitory noise

    Get PDF
    Neurons in the intact brain receive a continuous and irregular synaptic bombardment from excitatory and inhibitory pre-synaptic neurons, which determines the firing activity of the stimulated neuron. In order to investigate the influence of inhibitory stimulation on the firing time statistics, we consider Leaky Integrate-and-Fire neurons subject to inhibitory instantaneous post-synaptic potentials. In particular, we report exact results for the firing rate, the coefficient of variation and the spike train spectrum for various synaptic weight distributions. Our results are not limited to stimulations of infinitesimal amplitude, but they apply as well to finite amplitude post-synaptic potentials, thus being able to capture the effect of rare and large spikes. The developed methods are able to reproduce also the average firing properties of heterogeneous neuronal populations.Comment: 20 pages, 8 Figures, submitted to Scientific Report

    Death and rebirth of neural activity in sparse inhibitory networks

    Get PDF
    In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reactivation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neurons' death). However, the random pruning of the connections is able to reverse the action of inhibition, i.e. in a sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of the neurons (neurons' rebirth). Thus the number of firing neurons reveals a minimum at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by the neurons with higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving an analytic mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, the system passes from a perfectly regular evolution to an irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.Comment: 19 pages, 10 figures, submitted to NJ
    corecore