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In this article, we investigate the role of connectivity in promoting coherent activity in excitatory

neural networks. In particular, we would like to understand if the onset of collective oscillations can

be related to a minimal average connectivity and how this critical connectivity depends on the

number of neurons in the networks. For these purposes, we consider an excitatory random network of

leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed

Erdös-Renyi graph with average connectivity hki scaling as a power law with the number of neurons

in the network. The scaling is controlled by a parameter c, which allows to pass from massively

connected to sparse networks and therefore to modify the topology of the system. At a macroscopic

level, we observe two distinct dynamical phases: an asynchronous state corresponding to a

desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with

a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous

state, while PS emerges above a certain critical average connectivity hkic. For sufficiently large

networks, hkic saturates to a constant value suggesting that a minimal average connectivity is

sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered

network: sparse or massively connected. However, this value depends on the nature of the synapses:

reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of

macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the

disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal

behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a

limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond

to that of a homogeneous fully connected network for any c-value. Apart for the peculiar exception

of sparse networks, which remain intrinsically inhomogeneous at any system size. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4723839]

The spontaneous emergence of collective dynamical

behaviours in random networks made of many (identical)

interacting units is a subject of interest in many different

research fields ranging from biological oscillators to

power grids. In particular, how the macroscopic dynam-

ics of the network is influenced by the topology is an

active research line not only for nonlinear dynamics but

also for many other scientific disciplines, as for example

(computational) neuroscience.12 However, the most part

of the performed analysis have been devoted to the emer-

gence of the fully synchronized regimes, but in neuro-

science a complete synchronization is usually a symptom

of neural disorders, while coherent oscillations are often

associated to a partial synchronization (PS) among neu-

rons during brain activity.8 Coherent oscillatory activ-

ities are prominent in the cortex of the awake brain

during attention, and have been implicated in higher level

processes, such as sensory binding, storage of memories,

and even consciousness.

In this article, we analyze how the presence of disor-

der in the connections can influence the emergence of

coherent periodic activity in Erdös-Renyi networks of

excitatory pulse coupled spiking neurons. Our main result

indicates that the parameter controlling the transition

from asynchronous to coherent neural activity is simply

the average connectivity. Furthermore, for (sufficiently

large) networks the critical value of the average connectiv-

ity turns out to be independent of the network realization,

sparse or massively connected, but it is instead influenced

by the nature of the disorder, quenched or annealed.

I. INTRODUCTION

Neural collective oscillations have been observed in very

many context in brain circuits, ranging from ubiquitous c
oscillations to h rhythm in the hippocampus. The origin of

these oscillations is commonly associated with the balance

between excitation and inhibition in the network, while purely

excitatory circuits are believed to lead to “unstructured popu-

lation bursts.”8 However, recent “ex vivo” measurements per-

formed on the rodent neocortex3 and hippocampus6 in the

early stage of brain maturation reveal coherent activity
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patterns, such as giant depolarizing potentials. These collec-

tive oscillations emerge despite the fact that the GABA

(c-Aminobutyric acid) transmitter has essentially an excitatory

effect on immature neurons.5 Therefore, also in purely excita-

tory networks one can expect non trivial dynamics at a macro-

scopic level.

Numerical and theoretical studies of collective motions

in networks of simple spiking neurons have been mainly

devoted to balanced excitatory-inhibitory configurations,

e.g., see Ref. 7 and references therein. Only few studies

focused on coherent periodic activity in fully coupled excita-

tory networks of leaky integrate-and-fire (LIF) neurons.

These analyses revealed a regime characterized by a PS at

the population level, while the single neurons perform quasi-

periodic motions.23 It has been shown that the PS regime is

quite robust to perturbations, since it survives to moderate

levels of noise or dilution.15,20

Furthermore, in their recent study Bonifazi et al.6 found

that the functional connectivity of developing hippocampal

networks is characterized by a truncated power-law distribu-

tion of the out-degrees with exponent c¼ 1.1–1.3. This scal-

ing has been shown to hold over one/two decades, thus not

ensuring a scale-free distribution for the links over all scales,

but surely indicating the presence of a large number of hub

neurons, namely cells characterized by a high connectivity.

At early developmental stages of the brain, GABAergic hub

interneurons, performing complex excitatory/shunting inhib-

itory actions,5 seem to be responsible for the orchestration of

the coherent activity of hippocampal networks.6 The rele-

vance of hubs in rendering a neural circuit extremely hyper-

excitable has also been demonstrated in simulation studies of

a realistic model of the epileptic rat dentate gyrus, even in

the absence of a scale-free topology.16

Motivated by these studies, but without attempting to

reproduce the experimental results, we focus on a very prelim-

inary question: to which extent is the macroscopic neural dy-

namics influenced by the average degree of connectivity of

the neurons? Our specific aim is to analyze the key ingredients

leading to the onset of coherent activity, as opposed to asyn-

chronous dynamics, for different network size and topology.

Specifically, we consider the transition from an asyn-

chronous regime to partial synchronization in the excitatory

LIF pulse coupled neural networks introduced by Abbott and

van Vreeswijk.1 At variance with previous works, we study

dynamical evolution on random Erdös-Renyi networks with

an average connectivity growing (sub)-linearly with the net-

work size N. In particular, we consider average connectiv-

ities scaling as N2�c, thus exhibiting the same system size

dependence of connectivities associated to truncated power-

law distributions with decay exponent 1< c< 2. In the limit,

c! 1 the massively connected network, where the connec-

tivity is proportional to N, is recovered; while for c! 2 a

sparse network, where the average probability to have a link

between two neurons vanishes in the thermodynamic limit,11

is retrieved. The topology of Erdös-Renyi networks is modi-

fied by varying the parameter c in the interval [1:2], in partic-

ular as far as c� 2 trees and cycles of any order are present

in the network, while for c! 1 complete subgraphs of

increasing order appear in the system.2 In the paper, we will

study how and to which extent these topological modifica-

tions influence the macroscopic dynamics of the network,

with particular emphasis on the transition from asynchronous

to (partially) synchronous collective dynamics.

The paper is organized as follows: Sec. II is devoted to

the introduction of the neural model and of the indicators

employed to characterize the dynamics of the network. The

phase diagram reporting the collective states emerging in our

system is described in Sec. III. The influence of finite size

effects on the coherent activity is analyzed in Sec. IV, while

a characterization of the neural dynamics in term of maximal

Lyapunov exponent is reported in Sec. V. A brief discussion

of our results is outlined in Sec. VI.

II. MODEL AND METHODS

A. The model

We study a network of N LIF neurons with the mem-

brane potential xiðtÞ 2 ½0 : 1� of the neuron i evolving as:

_xiðtÞ ¼ a� xiðtÞ þ IiðtÞ i ¼ 1;…;N; (1)

where a > 1 is the suprathreshold DC current and Ii is the

synaptic current. Whenever the neuron reaches the threshold

xi¼ 1, a pulse s(t) is instantaneously transmitted to all the

connected post-synaptic neurons and the membrane potential

of neuron i is reset to xi¼ 0. The synaptic current can be

written as IiðtÞ ¼ gEiðtÞ, with g > 0 representing the synaptic

excitatory strength while the field Ei(t) is the linear superpo-

sition of the pulses s(t) received by neuron i in the past, in

formula

EiðtÞ ¼
1

ki

X
njtn<t

Cj;iHðt� tnÞsðt� tnÞ; (2)

where ki is the number of pre-synaptic neurons connected to

the neuron i (i.e., the in-degree of neuron i) and HðtÞ is the

Heaviside function. The connectivity matrix Cj,i appearing in

Eq. (2) has entry 1 (respectively 0) depending if the pre-

synaptic firing neuron j is connected (respectively not con-

nected) to neuron i and in general it is not symmetric.

Following van Vreeswijk23 we assume, for the single

pulse emitted at t¼ 0, the shape sðtÞ ¼ a2t expð�atÞ. The

explicit equation (2) can be thus rewritten as an implicit ordi-

nary differential equation:

€EiðtÞ þ 2a _Ei tð Þ þ a2EiðtÞ ¼
a2

ki

X
njtn<t

Cj;idðt� tnÞ: (3)

The continuous time evolution of the network can be trans-

formed in a discrete time event-driven map by integrating

Eq. (3) from time tn to time tnþ1, tn being the time immedi-

ately after the n-th spike emission.

Following Olmi et al.,20 the event-driven map read as:

Eiðnþ 1Þ ¼ EiðnÞe�asðnÞ þ QiðnÞsðnÞe�asðnÞ (4)

Qiðnþ 1Þ ¼ QiðnÞe�asðnÞ þ Cm;i
a2

ki
(5)
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xiðnþ 1Þ ¼ xiðnÞe�sðnÞ þ að1� e�sðnÞÞ þ gHiðnÞ; (6)

where Qi � aEi þ _Ei is an auxiliary variable and sðnÞ ¼ tnþ1

�tn is the inter-spike time interval. This can be determined

by solving the following implicit relationship

sðnÞ ¼ ln
a� xmðnÞ

aþ gHmðnÞ � 1

� �
; (7)

where m identifies the neuron which will fire next at time

tnþ1 by reaching the threshold value xm¼ 1.

The explicit expression for the nonlinear function Hi(n)

appearing in Eq. (6) is

HiðnÞ ¼
e�sðnÞ � e�asðnÞ

a� 1
EiðnÞ þ

QiðnÞ
a� 1

� �

� sðnÞe�asðnÞ

ða� 1Þ QiðnÞ; (8)

for the parameter values considered in this paper (g > 0 and

a > 1), Hi(n) > 0.

The evolution of the system is now modeled with a dis-

crete time map of 3N� 1 variables, fEi;Qi; xig. In fact, the

construction of the event-driven map implies that the mem-

brane potential of the neuron firing at time tnþ1 is always

equal to the threshold value, therefore this degree of freedom

does not take part to the discrete time dynamics. This proce-

dure corresponds to perform a suitable Poincaré-section. Fur-

thermore, the evolution of the model is performed by

assuming that only one neuron at a time will reach the

threshold. We have checked this assumption during the map

evolution and verified that it is always fulfilled in our model

with the chosen pulse shape and parameter values. The

event-driven scheme here described should be adapted to

take in account the case of more than one neuron firing to-

gether. In practice, the map evolution is performed in three

steps: first the next firing neuron (denoted as m above)

should be identified, this is done by evaluating the expected

firing times for all the membrane potentials by employing

Eq. (7) and by selecting the neuron m associated with the

minimal s value; second, the map is evolved by employing

Eqs. (4)–(6); and finally, xm is resetted to zero.

More details on the model are reported in Ref. 20; how-

ever, at variance with that study the pulse amplitudes,

appearing in Eqs. (2), (3), and (5), are normalized by the in-

degree ki of neuron i and not by the total number of neurons

N. The model parameters were fixed as a¼ 1.3, g¼ 0.4, and

a¼ 9, in order to ensure the emergence of a PS regime in the

corresponding fully coupled network.23

B. The connectivity matrix

In order to reveal the possible influence of network to-

pology on the dynamics of the system, we consider Erdös-

Renyi random network with an average connectivity growing

(sub)-linearly with N.2 The scaling of the average connectiv-

ity with the system size is controlled by a parameter c and in

Secs. III, IV and V, we will analyze how the dynamical prop-

erties of the network are influenced by the values of this pa-

rameter, i.e., by different ways of approaching the

thermodynamic limit. In particular, we consider a directed

Erdös-Renyi random graph, where the distribution of links k
per neuron is well approximated by a Poisson distribution,2

namely:

PðkÞ ¼ e�hki
hkik

k!
: (9)

According to Eq. (9), the degree distribution is completely

defined once the value of hki is given. To make a link with

recent experimental findings obtained for excitatory net-

works revealing power-law distributed connectivity,6 we

choose

hki ¼ p

2� c
½N2�c � 1�: (10)

The above expression corresponds to the average connectiv-

ity associated to a truncated power-law distribution

PðkÞ ¼ pk�c, once assumed that each neuron has at least one

connection, and where p is a proportionality factor. We limit

our analysis to 1 < c < 2, since Bonifazi et al.6 have meas-

ured quite low values for the exponent c, namely

c¼ 1.1–1.3, suggesting the existence of a large number of

highly connected neurons, hubs, in the network.

As a matter of fact, by choosing for hki the expression

(10), the probability of existence of an unidirectional

link connecting neuron j to i (i.e., the probability to have

Cj,i¼ 1) is:

PrðN; cÞ ¼ hki
N
¼ p

2� c
N1�c � 1

N

� �
: (11)

In the limit c! 1, the massively connected network is recov-

ered,11 since the average connectivity hki ¼ p� ðN � 1Þ is

proportional to the system size and PrðN; 1Þ ¼ pð1� 1=NÞ is,

apart finite-size corrections, constant and coincident with p.

For c < 2 (respectively, c > 2), the average number of synap-

tic inputs per neuron will grow (respectively decrease) with N,

in the limiting case c¼ 2 a sparse network will be essentially

recovered27 since hki ¼ plnN will vary in a limited manner

with respect to the system size. Indeed, by varying N by three

orders of magnitude from 100 to 100 000 the value of hki will

modify from 3.7 to 9.2 with p¼ 0.8. In the following, we

study networks of various sizes N, ranging from N¼ 100 to

N¼ 200 000, for different c-values in the interval [1:2]. The

value p is usually fixed to 0.8, apart for c¼ 1 (constant proba-

bility (CP) case) when p indeed coincides with the probability

to have a unidirectional link. In such case, the dependence on

p is examined in details in Sec. III.

Let us stress that in the present study the distributions of

pre-synaptic (in-degree) and of post-synaptic (out-degree)

connections are identical, and this is guaranteed by the above

outlined procedure to determine unidirectional links for

Erdös-Renyi networks.

In what follows, we consider two different ways to select

the random connectivity matrix: in the first case, the synaptic

connections are randomly chosen before the simulation and

they do not change in time (quenched disorder); while for the
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second procedure, the post-synaptic neurons receiving the

emitted pulse (i.e., the efferent connections) are randomly

selected each time a neuron fires (annealed disorder). The lat-

ter choice can be justified from a physiological point of view

by the fact that the synaptic transmission of signals is an unre-
liable process.10 It should be noticed that in the annealed case,

since the network modifies in time, the pulse amplitudes are

normalized by the average in-degree hki and not by ki as in

the quenched case.

C. Characterization of macroscopic attractors

In order to perform a macroscopic characterization of

the dynamical states of the network, we exploit the average

fields:

�EðtÞ ¼ g

N

XN

i¼1

EiðtÞ; �QðtÞ ¼ g

N

XN

i¼1

QiðtÞ; (12)

where the fields have been also rescaled by the synaptic

strength as done in Ref. 20.

As a measure of the level of homogeneity among the

neurons of the network, we consider the standard deviation

r(t) of the fields fEiðtÞg acting on the single neurons

rðtÞ ¼ g2

N

XN

i¼1

E2
i ðtÞ � �E

2ðtÞ
 !1=2

; (13)

for completely homogeneous systems, such as globally

coupled networks, EiðtÞ � �E and r � 0.

The degree of synchronization among the neurons is

quantified by the order parameter usually employed in the

context of phase oscillators13

RðtÞ ¼ 1

N

XN

j¼1

eihjðtÞ

�����
�����; (14)

where hj is the phase of the jth neuron, which can be properly

defined as a (suitably scaled) time variable,26 hjðtÞ
¼ 2pðt� tj;nÞ=Tq;n, where tj,n indicates the time of the last

spike emitted by the jth neuron, while Tq;n ¼ tq;nþ1 � tq;n is

the n-th inter-spike interval associated to the neuron q which

was the last to fire in the network.28

A non zero-value of R represents an indication of partial
synchronization among the neurons, while a vanishingly

small R � 1=
ffiffiffiffi
N
p

is observable for asynchronous states

(ASs) in finite systems.13

D. Lyapunov analysis

The dynamical microscopic instabilities of a system can

be characterized in terms of the maximal Lyapunov exponent

k: a positive k being a measure of the degree of chaoticity of

the considered system. In particular, the stability of Eqs.

(4)–(6) can be analyzed by following the evolution of infini-

tesimal perturbations in the tangent space. The correspond-

ing equations are obtained by linearizing (4) as follows,

dEiðnþ 1Þ ¼ e�asðnÞ½dEiðnÞ þ sðnÞdQiðnÞ�

� e�asðnÞ½aEiðnÞ þ ðasðnÞ � 1ÞQiðnÞ�dsðnÞ;
(15a)

dQiðnþ 1Þ ¼ e�asðnÞ½dQiðnÞ � aQiðnÞdsðnÞ�; (15b)

dxiðnþ 1Þ ¼ e�sðnÞ½dxiðnÞ þ ða� xiðnÞÞdsðnÞ�
þ gdHiðnÞ i ¼ 1;…;N; dxmðnþ 1Þ � 0;

(15c)

where the condition dxmðnþ 1Þ � 0 is due to the Poincaré

map we are implementing to evolve the network dynamics.

An explicit expression of ds(n) can be obtained by

differentiating Eqs. (7) and (8)

dsðnÞ ¼ sxdxmðnÞ þ sEdEmðnÞ þ sQdQmðnÞ; (16)

where

sx :¼ @s
@xm

; sE :¼ @s
@Em

; sQ :¼ @s
@Qm

: (17)

Moreover, dHi(n) is a short-cut notation for the linearization

of expression (8), which in turn depends on dEiðnÞ; dQiðnÞ,
and ds(n). For more mathematical details see Ref. 25.

To estimate the maximal Lyapunov exponent k, we fol-

low the usual procedure,22 in particular, we measure the ex-

ponential growth rate of an infinitesimal perturbation by

iterating the system (15). In order not to loose accuracy in

the estimation, the amplitude of the perturbation should be

rescaled at regular intervals, in our case we have rescaled ev-

ery 1000 spikes.

The method here outlined to estimate the maximal Lya-

punov exponent originates from a methodology previously

introduced for continuous time dynamics interrupted by dis-

continuous events occurring at discrete times.17,18 In particu-

lar, our approach differentiates from previous applications of

the latter method to non-smooth flux associated to spiking

neuronal models,9,24 because we consider the evolution in

the tangent space associated to a suitable Poincaré map con-

necting successive events.

III. PHASE DIAGRAM

In this model, two different macroscopic regimes can be

observed: the asynchronous state and the partial synchroniza-

tion. The asynchronous state is characterized by an incoher-

ent dynamics of the neurons in the network leading to a

spot-like macroscopic attractor in the ð �E; �QÞ plane and an

almost constant average field �E,1 while to the coherent PS re-

gime corresponds a closed curve attractor15 and a periodic

behavior of �E in time as shown in Figs. 1(a) and 1(b). The inco-

herent and coherent neural dynamics can be clearly appreciated,

in the two regimes, also at microscopic level by examining the

corresponding raster plots reported in Figs. 1(c) and 1(d).

As a first aspect, we will investigate the occurrence of

asynchronous and partially synchronized states for finite net-

works and different average connectivity hki. In order to dis-

tinguish the two regimes, we have examined the macroscopic
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attractor shape, the extrema values of the average field �E, and

the synchronization parameter R as a function of N.

A. Erdös-Renyi networks with constant probability

As an initial reference study, we consider Erdös-Renyi

networks with unidirectional links chosen at random with a

constant probability p for any network size N. This amounts

to consider the limiting case c! 1 and to have an average

connectivity scaling linearly with the size, i.e., hki ¼ pN. Let

us first examine the minima and maxima of �E of a network

of size N by varying the probability p between 0 and 1, as

shown in Fig. 2(a) for N¼ 1600. At low probability, one has

an asynchronous state while the PS regime emerges only for

sufficiently large p, both in the quenched and annealed case.

This result is related to the fact that the presence of noise or

disorder reduces the coherence needed to observe the PS re-

gime.15 As a matter of fact increasing p (i.e., diminishing the

number of broken links in the network) the attractor size

increases and finally reaches the fully coupled result. The

degree of coherence can be measured in terms of the average

synchronization indicator hRi. As shown in Fig. 2(b), the

system coherence steadily increases with p, except in the

asynchronous regime, where hRi � 0, apart for finite size

fluctuations.

Let us now report the phase diagram for the macro-

scopic activity of the network in the ðN; hkiÞ plane, for both

annealed and quenched disorder. Increasing the average

connectivity, keeping the system size fixed, leads to a tran-

sition from asynchronous to partially synchronized regimes

(see Fig. 3). The transition occurs at a critical average con-

nectivity hkic, indicates by the asterisks connected by a

black solid line in Fig. 3, which for low N increases steadily

with N, but eventually saturates for N> 10 000 to an asymp-

totically constant value which depends on the disorder real-

ization: namely, hkias ¼ 725 6 25 for the quenched case and

hkias ¼ 225625 in the annealed one.29

B. Erdös-Renyi networks with c-dependent probability

To verify the generality of these results, we investigate

Erdös-Renyi networks with c-dependent probability. In par-

ticular, we have estimated, for system sizes in the range

100 < N < 200 000, the macroscopic attractors for various

c-values (namely, c¼ 1.1, 1.3, 1.5, and 1.7), after discarding

long transient periods. For small system sizes, the network is

in the asynchronous regime which is characterized by a spot-

like attractor in the ð �E; �QÞ-plane. For larger number of

FIG. 1. Characterization of the AS and of the PS one in terms of macro-

scopic fields and single neuron dynamics. Panel (a): macroscopic attractors

in the ð �E; �QÞ plane. Panel (b): the average field �E as a function of time. Pan-

els (c) and (d): raster plots. The data refer to Erdös-Renyi networks with

hki ¼ p� N, quenched disorder, and N¼ 1600, the black (respectively, red)

symbols correspond to the asynchronous state observable for p¼ 0.2

(respectively, PS for p¼ 0.7).

FIG. 2. (a) Minima and maxima of the average field �E as a function of p,

the circles joined by solid lines refer to the annealed disorder, while the stars

connected by the dashed line to the quenched case. The dotted-dashed (red)

lines indicate the fully coupled results (corresponding to p � 1). (b) Syn-

chronization indicator hRi averaged over time as a function of p for the

quenched case. The data refer to Erdös-Renyi networks with CP and size

N¼ 1600 and have been estimated, after discarding a transient of 4� 107

spikes, by averaging over a train of 1–2� 107 spikes.
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neurons, PS emerges in the system characterized by closed

curve (macroscopic) attractors. Furthermore, similarly to the

results reported in Ref. 20, increasing N the curves tend to an

asymptotic shape, corresponding to the fully coupled attrac-

tor, while fluctuations diminish. To exemplify this point, var-

ious macroscopic attractors for c¼ 1.3 and annealed disorder

are reported in Fig. 4(a).

As already reported for the constant probability net-

works, the systems with annealed disorder converge more

rapidly with N towards the asymptotic fully coupled attractor

with respect to the quenched case, as shown in Fig. 4(b) for

c¼ 1.1, 1.3, and 1.5. Increasing c, we observe that the transi-

tion from the asynchronous to the partially synchronized re-

gime occurs at larger and larger system size, both for

annealed and quenched disorder. The results for c¼ 1.7 are

not shown in Fig. 4(b), since for all the examined network

sizes (up to N¼ 200 000) �E extrema coincide within the error

bar, indicating that the system is in the asynchronous

regime.30

Asynchronous (respectively, partially synchronized)

regimes are reported in the phase diagram displayed in Fig. 3

as filled (respectively, empty) symbols for the investigated

c-values. The critical line hkic ¼ hkicðNÞ (indicated by the

solid black line in Fig. 3) denoting the transition from asyn-

chronous to partially synchronized regime coincides with

that determined previously for constant probability networks.

We can thus safely affirm that the dynamical regimes of the

Erdös-Renyi networks depend, at a macroscopic level, sim-

ply on the average connectivity, once the system size N is

fixed. This could be expected from the fact that for

Erdös-Renyi networks the distribution of links per neuron is

completely determined by hki (see Eq. (9)). However, the in-

dependence of hkic from N at N > 10 000 is unexpected and

suggests that coherent behaviors, like PS regimes, can be

observed in networks of any size for vanishingly small rela-

tive connectivity hki=N.

IV. NETWORK HOMOGENEITY

We observe that for any considered c, the fields (Ei, Qi)

associated with the different neurons tend to synchronize for

increasing N. Therefore, in the thermodynamic limit

(N !1) disordered networks tend to behave as fully coupled

ones, where all the neurons are equivalent and a single field is

sufficient to describe the macroscopic evolution of the system.

In order to quantify the level of homogeneity among the

various neurons, we measured the standard deviation

FIG. 3. Phase diagram for the macroscopic activity of the network in the

ðN; hkiÞ plane: (a) annealed disorder and (b) quenched disorder. The (black)

asterisks connected by the solid (black) line correspond to the transition val-

ues hkic from AS to PS regime estimated for Erdös-Renyi networks with

constant probability. The other symbols refer to Erdös-Renyi with c > 1:

solid (respectively, empty) symbols individuate asynchronous (respectively,

partially synchronized) states. In particular, (blue) squares refer to c¼ 1.1,

(red) circles to c¼ 1.3, (green) diamonds to c¼ 1.5, and (magenta) triangles

to c¼ 1.7. The reported data are relative to the state of the network after dis-

carding transients ranging from 2� 107 spikes at the smaller sizes to 3� 108

spikes for the larger networks.

FIG. 4. (a) Macroscopic attractors in the ð �E; �QÞ plane for an Erdös-Renyi

networks with c¼ 1.3 and annealed disorder, the curves from the interior to

the exterior correspond to increasing system sizes, from N¼ 1600 to 25 600.

The most external (black) curve refers to a fully coupled network with

N¼ 3200. (b) Minima and maxima values of the average field �E as a func-

tion of N for various c-values: namely, (black) circles c¼ 1.1, (red) triangles

c¼ 1.3, and (blue) squares c¼ 1.5. The empty (respectively, filled) symbols

refer to annealed (respectively, quenched) disorder. The dotted-dashed (ma-

genta) lines indicate the fully coupled values.
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(Eq. (13)) relative to the fluctuations of the different local

fields Ei with respect to the average field �E. In Fig. 5(a), we

plot the time average of the standard deviation, hri, for

annealed disorder and various c values. We observe a power

law decay hri / N�b, where the exponent b depends on the

c-parameter as b¼ 1� c/2 (see Fig. 5(b)). Furthermore, for

the limiting case c¼ 2.0, the decay of hri is consistent with a

scaling 1=
ffiffiffiffiffiffiffiffi
ln N
p

as displayed in the inset of Fig. 5(a). Alto-

gether, the reported dependencies suggest the following rela-

tionship to hold:

hri / 1ffiffiffiffiffiffi
hki

p ; (18)

thus, fields fluctuations are driven by the average in-degree

value irrespectively of the total number of neurons. These

results confirm once more that in the limit N !1 the neural

field dynamics converges to that of homogeneous networks,

for both quenched and annealed disorder.

The relationship among hri and the average connectiv-

ity reported in Eq. (18) clearly indicates that for a sparse net-

work, with constant average connectivity, hri will remain

finite even in the thermodynamic limit. Therefore, we can

conclude that a sparse network cannot be ever reduced to a

fully coupled one by simply rescaling the synaptic coupling

as done in Ref. 20, even for very large systems.

V. CHAOTIC VS REGULAR DYNAMICS

Homogeneous fully connected pulse coupled networks

exhibit regular dynamics.23 In particular, for excitatory net-

work and finite pulses the asynchronous state becomes a

splay state characterized by all neurons spiking one after the

other at regular intervals with the same frequency and by a

constant mean field �E, while the PS regime becomes per-

fectly periodic at a macroscopic level.1

The introduction of disorder in the network leads to

irregularity in the dynamics of the single neurons, which are

reflected also at a macroscopic level. This kind of determin-

istic irregular behavior has been identified as weak chaos
whenever the irregularity vanishes for sufficiently large sys-

tem size.19 The chaotic motion can be characterized in terms

of the maximal Lyapunov exponent k: regular orbits have

non positive exponents, while chaotic dynamics are associ-

ated with k > 0.

For finite size networks chaotic dynamics is observed

both for annealed and quenched disorder. However, for all

c-values examined in this work, k tends to decrease for a suf-

ficiently large number of neurons in the network. Therefore,

we can safely affirm that for any Erdös-Renyi network with

average connectivity given by Eq. (10), the neuronal dynam-

ics is weakly chaotic; i.e., the evolution will become

completely regular for infinite networks. Numerical results

for quenched disorder are reported in Fig. 6(a) for various

c-values. The maximal Lyapunov exponent exhibits clear

power-law decays N�d, with d decreasing and eventually

vanishing for c! 2 (see Table I). These results generalize

previous indications reported in Olmi et al. for a specific

realization of diluted network.20

Considering networks with annealed disorder it must be

underlined that for sufficiently large number of neurons and

c < 2, the maximal Lyapunov reveals a tendency to decrease.

FIG. 5. (a) Average standard deviation hri versus the system size N for

annealed disorder and various c-values: c¼ 1.1 (blue) squares, 1.3 (red)

circles, 1.5 (green) diamonds, and 1.7 (magenta) triangles. The dashed line

represents best fits with a power-law N�b to the reported data. The data in

the inset (black asterisks) refer to a c¼ 2.0, the dashed line is a guide for the

eyes. (b) Power-law exponents b for annealed (black circles) and quenched

(red triangles) disorder in the network as a function of the parameter c. The

dashed (blue) line refers to the linear law b¼ 1� c/2. The reported data

have been estimated by averaging over trains made of 2� 106–108 spikes,

after discarding transients of 4� 105–4� 106 spikes.

FIG. 6. Maximal Lyapunov exponents as a function of the system size N for

various c-values. The data have been obtained by discarding a transient of

the order of 108–109 spikes and then by following the dynamics in the real

and tangent space for an equivalent duration, moreover the data have been

averaged over 3 to 5 different network realization with quenched disorder.
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However, clear scaling laws cannot be inferred for all the

examined c-values on the range of affordable system sizes,

namely 50�N� 12 500. Larger network sizes are probably

required with unreliable synapses to have clear scaling laws,

due to the fact that the transition from asynchronous regime

to partial synchronization occurs at critical system sizes

within the investigated range. On the contrary, in the

quenched case, once c is fixed a unique regime is observable

for almost all the investigated sizes. In particular, the net-

work is always in an asynchronous regime for c¼ 1.7 and

1.5, while it is in partial synchronization for c¼ 1.1 and 1.3

for (almost) all the considered number of neurons. These

additional findings strengthen the above reported conclu-

sions: finite size systems are weakly chaotic for any consid-

ered dynamical regime.31

According to the results reported above, we expect that

for sparse networks the maximal Lyapunov exponent will

eventually saturate to some constant value, apart for possible

logarithmic corrections. Thus, sparse networks should

remain chaotic for any system size, paralleling the behavior

of the microscopic fluctuations shown in Sec. IV. Therefore,

microscopic inhomogeneities and chaotic behavior appear as

deeply related.

VI. DISCUSSION

Collective periodic oscillations in excitatory Erdös-

Renyi networks can be observed only above a critical aver-

age in-degree. This latter quantity saturates to a constant

value for networks with a sufficiently large number of neu-

rons, thus suggesting that the key ingredient responsible for

the emergence of collective behaviors is the number of pre-

synaptic neurons both for massively connected networks as

well as for sparsely connected ones. This result confirms and

generalizes previous findings on the stability of the complete

synchronized state for pulse-coupled Hindmarsh-Rose neu-

rons.4 Furthermore, our results indicate that the minimal net-

work size required to observe collective oscillations diverges

with the exponent c ruling the scaling of the average connec-

tivity with the number of neurons.

The presence of annealed disorder in the network (corre-

sponding to unreliable synapses) favors the emergence of

coherent activity with respect to the quenched case (associ-

ated with reliable synapses), since in the first case the asymp-

totic average connectivity required to observe collective

oscillations is much smaller. This is probably due to the fact

that in the annealed situation each neuron is on average sub-

jected to the same train of stimuli, while with quenched dis-

order the dynamics of each neuron depends heavily on its

neighbors. Furthermore, for sufficiently large networks the

macroscopic behavior observable with reliable or unreliable

synapses becomes identical. This seems to indicate that at

the level of population dynamics the reliability or unreliabil-

ity in the synaptic transmission can be irrelevant.

The average in-degree hki also controls the fluctuations

among different neurons, being the fluctuations proportional

to the inverse of the square root of hki. Therefore, for Erdös-

Renyi networks with average in-degree proportional to any

positive power of N, the fluctuations will vanish in the limit

N !1, leading to a homogeneous collective behavior anal-

ogous to that of fully connected networks. On the contrary,

inhomogeneities among neurons will persist at any system

size in sparse networks.

Recent experimental results on the intact neuronal net-

work of the barrel cortex of anesthetized rats seem to clearly

suggest that the dynamics of this system is chaotic.14 This

result poses severe questions about the possibility of reliable

neural coding. The evolution of our models is chaotic for

any finite networks. However, in the presence of coherent

periodic activity, the chaoticity present in the system is not

so strong to destroy the average collective motion. Thus, the

trial-to-trial variability, observable in the response of each

single neuron and induced by chaos, does not prevent the

possibility of the network to encode information. The infor-

mation can be coded in some property associated to the

global (almost regular) oscillations of the network which are

robust to local fluctuations emerging at the neuronal level,

and this collective coding can represent an alternative to the

dilemma rate versus spike timing coding.14

The level of chaos in the examined networks decreases

with N and the dynamics becomes regular in the thermody-

namic limit. However, the decrease of the maximal Lyapunov

exponent with N slows down dramatically for c! 2, suggest-

ing an erratic asymptotic behavior for sparse networks.

Our results represent only a first step in the analysis of

what matters in the network topology for the emergence of

coherent neural dynamics. In future works, our findings

should be critically verified for more complex topologies,

like scale-free and small-world, and the influence of other

ingredients, like the asymmetry in the in-degree and out-

degree distributions,21 should be also addressed.
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