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Abstract

We analyse the possible dynamical states emerging for two symmetrically pulse cou-

pled populations of leaky integrate-and-fire neurons. In particular, we observe broken sym-

metry states in this set-up: namely, breathing chimeras, where one population is fully syn-

chronized and the other is in a state of partial synchronization (PS) as well as generalized

chimera states, where both populations are in PS, but with different levels of synchroniza-

tion. Symmetric macroscopic states are also present, ranging from quasi-periodic motions,

to collective chaos, from splay states to population anti-phase partial synchronization. We

then investigate the influence disorder, random link removal or noise, on the dynamics of

collective solutions in this model. As a result, we observe that broken symmetry chimera-

like states, with both populations partially synchronized, persist up to 80% of broken links

and up to noise amplitudes ' 8% of threshold-reset distance. Furthermore, the introduc-

tion of disorder on symmetric chaotic state has a constructive effect, namely to induce the

emergence of chimera-like states at intermediate dilution or noise level.

1 Introduction

The emergence of broken symmetry states (Chimera states) in population of oscillators or ro-
tators is an extremely popular and active research field nowdays, in particular after that ex-
perimental evidences for the existence of these states have been reported in several contexts
ranging from ensembles of mechanical oscillators, to laser dynamics, to populations of chemical
oscillators (for a recent review on the subject see [14]). Chimera states in neural systems have
been firstly reported by Sakaguchi for a chain of nonlocally coupled Hodgkin-Huxley models
with excitatory and inhibitory synaptic coupling [18], while the first evidence of chimeras in mod-
els of globally coupled populations has been reported in [12] for leaky integrate-and-fire (LIF)
excitatory neurons. More recently, chimeras in LIF networks have analysed in different contexts,
ranging from small-network topology [17], to chains of non-locally coupled LIFs with refractori-
ness [20], to the emergence of chimeras in a single fully coupled neural population [4]. Globally
pulse coupled Winfree models, reproducing θ-neuron dynamics, also support chimera states,
ranging from breathing (periodic and quasi-periodic) to chaotic ones [15].

Since the connectivity in the brain is definitely sparse and noise sources cannot be avoided,
it is fundamental in order to understand the possible relevance of chimera-like states in neural
dynamics to test for the robustness of these solutions to dilution and to the presence of noise.
Studies in this direction have been performed mainly for oscillator models [6, 7, 8] or excitable
systems [19]. In particular, chimera states in random diluted Erdös-Renyi networks have been
observed up to a dilution of 8% of the links [6], furthermore it has been shown that noise has
not only a washing out effects on chimera solutions, but it can also have a constructive role
promoting new dynamical phenomena [7, 19].
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In this paper, we focus on the dynamics of two fully pulse coupled populations of excitatory
LIF neurons with stronger synaptic coupling among the neurons of the same population and
a weaker coupling with those of the other population, similarly to the simplest set-up showing
the emergence of chimera states in phase oscillator networks [1]. Furthermore, the neurons
are synaptically connected via the transmission of pulses of finite duration. This model for glob-
ally coupled systems reveal the emergence of broken symmetry population states, chimera-
like, [12], as well as of chimera states even within a single population [4].

Our main aim is to study how the macroscopic solutions, found in the deterministic fully coupled
networks, will be modified by considering randomly connected networks of increasing dilution
and by adding noise of increasing amplitude to the system. In particular, after having introduced
the considered models in Sect. 1.2, we will report the complete phase diagram for the macro-
scopic solutions of the fully coupled case in Sect. 1.3. These solutions vary from chimera-like, to
symmetric solutions with complex dynamic ranging from collective quasi-periodic dynamics to
macroscopic chaos. Furthermore, we will concentrate on the effect of random dilution and noise
on the dynamics of broken symmetry and chaotic states in Sect. 1.4 and 1.5. Finally, we will
devote Sect. 1.6 to a brief discussion of the reported results. The algorithm employed to exactly
integrate the fully coupled populations is explained in the Appendix.

2 The model

Firstly we consider two fully coupled networks, each made of N LIF oscillators. Following
Refs. [23], the membrane potential x

(k)
j (t) of the j − th oscillator (j = 1, . . . , N ) of the

kth population (k = 0, 1) evolves according to the differential equation,

ẋ
(k)
j (t) = a − x

(k)
j (t) + gsE

(k)(t) + gcE
(1−k)(t) (1)

where a > 1 is the suprathreshold input current, while gs > 0 and gc > 0 gauge the self-
and, resp., cross-coupling strength of the excitatory interaction. The discharge mechanism op-
erating in real neurons is modeled by assuming that when the membrane potential reaches the
threshold value x

(k)
j = xth = 1, it is reset to the value x

(k)
j = xR = 0, while a α-pulse

p(t) = α2t exp−αtÍŠ is transmitted to and instantaneously received by the connected neu-
rons. For this kind of pulses the field E(k)(t) generated by the neurons of the population k,
satisfies the differential equation

Ë(k)(t) + 2αĖ(k)(t) + α2E(k)(t) =
α2

N

∑

j,n

δ(t − t
(k)
j,n) , (2)

where t
(k)
j,n is the nth spiking time of the jth neuron within the population k, and the sum is

restricted to times smaller than t. In the limit case gs = gc = g, the two populations can be
seen as a single one made of 2N neurons with an effective coupling constant G = 2g.

Secondly we consider two random undirected Erdös-Renyi networks, each made of N LIF os-
cillators and with an average in-degree K, therefore the probability to have a link between two
neuron is simply K/N . We assume that the membrane potential x

(k)
j (t) of the j− th oscillator
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of the kth population (k = 0, 1) evolves according to the differential equation

ẋ
(k)
j (t) = a − x

(k)
j (t) + gsE

(k)
j (t) + gcE

(1−k)
(t) ; (3)

where the field E
(k)
j (t) takes in account of the pulses received by neuron j from neurons of

its own population, while the field E
(1−k)

(t) represents the effect of the neuron beloging to the
other population.

In particular, E
(k)
j (t) is the linear superposition of the pulses p(t) received by neuron i of the

kth-population at all times tn < t (the integer index n orders the sequence of the pulses emitted
in the network), namely :

E
(k)
j (t) =

1

K

∑

i

∑

n|tn<t

C
(k)
i(n),jθ(t − tn)p(t − tn) , (4)

where θ(x) is the Heavyside function and the connectivity matrix C
(k)
i,j has entries 1 (0) de-

pending if the neuron j presents a post-synaptic neuron connection with neuron i or not. For
each neuron we should introduce a different field, since each neuron has a different connectivity
in the network. It is more convenient to turn also this time, as previously done for the globally
coupled case, the explicit Eq. (4) into the following differential equation

Ë
(k)
j (t) + 2αĖ

(k)
j (t) + α2E

(k)
j (t) =

α2

K

∑

i,n

C
(k)
i(n),jδ(t − t

(k)
i,n) . (5)

Furthermore, E
(1−k)

(t) = 1
N

∑N

i=1 E
(1−k)
i (t) represents a “mean field” effect of the second

population on the neuron of the first population, since it is the average of all the fields E
(1−k)
i of

the second population. As a result, the dynamics of the neural network model takes the more
“canonical” form of a set of coupled ordinary differential Eqs. (3) and (5), which can be analyzed
with the standard methods of dynamical systems. The setup we have employed, diluted random
connectivity within each population, but mean-field like cross coupling, will favour the stabiliza-
tion of the broken symmetry state as suggested in [6]. The have studied the diluted networks in
so-called massively connected case, namely where the average in-degree is proportional to the
system size K = (1 − d) × N .

Finally we consider two diluted networks with noise. The noise is introduced in the system every
time the membrane potential has reached the threshold value and it is reset to the reset value.
In particular, instead of using a reset value xR = 0, the neuron is reset to a random value
chosen in the interval xR ∈ [−∆, ∆], where ∆ takes into account the level of the noise. In this
case the percentage of dilution is kept fixed (d = 0.2).

The integration of the above models is performed exactly in terms of so-called event driven
maps analogously to what previously done in [23, 12], for the two fully coupled cases, where
non trivial round-off problems can occur a more refined event driven map has been developed
and it is explained in the Appendix.

The degree of synchronization within each population of neurons can be quantified by intro-

ducing the typical order parameter used for phase oscillators r(k)(t) = |〈eiθ
(k)
j (t)〉|, where θ

(k)
j
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Figure 1: (Color Online) Phase diagram in the (gc, gs)-plane reporting the stability region of the
observed various collective solutions. For the definitions of the different phases see the text.

is the phase of the jth oscillator, that can be properly defined as a (suitably scaled) time vari-
able [22], θ

(k)
j (t) = 2π(t − t

(k)
j,n)/(t − t

(k)
m,n−1), where n identifies the time of the last spike

emitted by the jth neuron, while m identifies the neuron that has emitted the last spike at time t.
One can verify that this phase is bounded between 0 and 2π, as it should. Furthermore, the fully
synchronized regime corresponds to r(k) ≡ 1, and in the asynchronous regime one expects
r(k) ' 1/

√
K , where K is the average in-degree of the network.

3 Fully Coupled Network: Phase Diagram

The phase plane (gc, gs) shown in Fig. 1 has been obtained by studying the model (1,2) for
a = 1.3 and α = 9. As already mentioned, along the diagonal (g = gs = gc) the two popula-
tion model (1) reduces to a single population with coupling strength G = 2g. For our choice of
a and α values, the system exhibits Partial Sybnchronization PS, where the macroscopic field
displays collective periodic oscillations and the microscopic dynamics is quasiperiodic [21, 23].
Below the diagonal, the evolution is still symmetric but the neurons are now Fully Synchronized

(FS); the neurons of both populations fire at the unison. More interesting phenomena can be
observed above the diagonal. In this situation a solution with broken symmetry emerges nat-
urally, where one population is FS and the other is PS, this represents a generalized form of
chimera state. In particular, one observes that while the order parameter of one population is
exactly one, the other oscillates periodically, as shown in Fig. 2 (c). Therefore this chimera state
can be classified as a periodically breathing chimera, which has been previously reported for
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Figure 2: (Color Online) Macroscopic attractors displayed by reporting P ≡ E + αĖ vs E for
a PS-FS state (a) and a PS1-PS2 (b), the time evolution of the corresponding order parameters
r(0) and r(1) is also reported in (c) and (d). In panels (e), (f) are reported the time behaviors
of the macroscopic fields E(0) and E(1). The variables corresponding to population 0 (resp. 1)
are shown in blue (resp. maroon). As regards the parameter values, (gc = 0.07, gs = 0.1) in
(a),(c) and (gc = 0.02, gs = 0.17) in (b),(d).
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the Kuramoto model [1, 16] as well as for a two population network of rotators in [13]. Despite
the macroscopic filds E(0) and E1 are both oscillating periodically and locked, as evident from
Figs. 2 (a),(e), the two populations are characterized by different behaviour at a microscopic
level, where the neurons are periodic in the FS population and quasi-periodic in the PS pop-
ulation. This means that the neurons subject to two different linear combinations of E(0) and
E(1) behave differently: a population locks with the forcing field, while the other one behaves
quasi-periodically.

Another even more interesting symmetry broken state (termed PS1-PS2) can be observed for
larger gs-values and gc < 0.055; in this case both populations exhibit PS, but their dynamics
take place over two different attractors with two different degrees of synchronization, as shown
in Fig. 2 (b),(d). Analogously to the PS-FS state, the two fields are periodic and phase locked, as
it can be seen by looking at the time behavior of E(0) and E(1) in Fig. 2 (f). However, at variance
with PS-FS, here both populations exhibit quasi-periodic motions. This simmetry broken state
can be also considered a Chimera state and it has been reported only for LIF populations so-
far [12].

For larger gs values the symmetry between the two collective fields is recovered with the only
difference of phase shift between the two fields which oscillate in antiphase and this is why we
term this regime Antiphase Partial Synchronization (APS) (see Fig. 3 (a), (g)). In this regime,
at finite N the istantaneous maximum Lyapunov exponent strongly fluctuates and we cannot
exclude that this regime is weakly chaotic. Analogously to the chaotic behaviour found in sin-
gle population of massively coupled LIFs [11], we expect that the chaoticity disappears in the
thermodynamic limit. However, it is peculiar the behaviour of the order parameters in this case,
as shown in Fig. 3 (d): the two populations are not equally synchronized and the two order pa-
rameters r(0) and r(1) are behaving periodically in time, but at each oscillation the role of most
synchronized population switches from one to the other.

In a limited region above the diagonal and for gc > 0.055 the collective behaviour is still sym-
metric but irregular (Collective Chaos), as revelead by the two macroscopic attractors (see Fig.
3(b)). Furthermore, in this case one can observe quite wide oscillations of the order parameters
of the two populations in the range 0.4 ≤ r(0), r(1) ≤ 1, as shown in Fig. 3(c). Whenever
one population gets synchronized, with an order parameter ' 1, the other partially desynchro-
nizes reaching values r ' 0.4. These collective oscillations in the order parameters occur on
quite long timescale with respect to the periods of oscillations of the two macroscopic field E(0)

and E(1) reported in Fig. 3(h). However, the oscillations in the level of synchronization induce
modulations with periods of the same order in the field dynamics. In a previous paper [12] we
have demonstrated that the finite-amplitude Lyapunov exponent [3], for this state, coincides with
the microscopic maximal Lyapunov exponent, thus suggesting that the microscopic chaos is
induced by the collective drive and therefore the origin of chaos is indeed collective in this case.

Moreover, in a strip above the chaotic region, one can observe a symmetric collective quasiperi-
odic motion on a Torus T 2 for both populations (see Fig. 3 (c)). This means that the quasiperi-
odic motion of the fields is accompanied by a dynamics of the single neurons along a torus T 3.
An analogous regime has been previously reported in [10] for a population of coupled Stuart-
Landau oscillators. Here, we find it in a model where the single units are described by an single
variable. Furthermore, the motion on the macroscopic T 2 attractor reported in Fig. 3 (c) can be
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Figure 3: (Color Online) Macroscopic attractors displayed by reporting P ≡ E + αĖ vs E
for an APS (a), a chaotic state (b), and a TORUS state (c), the time evolution of the corre-
sponding order parameters r(0) and r(1) is also reported in (d), (e) and (f). In panels (g), (h), (i)
are reported the time behaviors of the macroscopic fields E(0) and E(1). The variables corre-
sponding to population 0 (resp. 1) are shown in magenta (resp. blue). As regards the parameter
values, (gc = 0.07, gs = 0.35) in (a),(d),(g), (gc = 0.08, gs = 0.16) in (b),(e),(h) and
(gc = 0.07, gs = 0.3) in (c),(f),(i).
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characterized by estimating the winding numbers for various system sizes, we observe that the
winding number is constant, indicating that the torus survives in the thermodynamic limit. In this
case, we observe quite regular antiphase oscillations in the synchronization order parameters
between values 0.4 ≤ r(0), r(1) ≤ 0.8 occurring on time scales definitely longer than those
associated to the oscillations of the macroscopic fields (as shown in Fig. 3 (f) and (i).

Finally, for yet larger gs-values both populations converge towards a Splay State, characterized
by constant fields, no collective motion and periodic microsocpic evolution of the neurons. This
is not surprising, as we already know that for the chosen α- and a-values, the splay state is
stable in a single population of neurons for G > G0 ≡ 0.425 [21, 23].

4 Diluted Networks

In order to observe the influence of dilution on the dynamics, we considered in absence of
dilution a PS-FS state with broken symmetry and a Chaotic state. In particular, we have analyzed
the modifications of the macroscopic attractors, of the level of synchronization, as well as the
microscopic dynamics induced by cutting randomly links for these 2 states.

To characterize the two macroscopic states, we have decided to consider the level of synchro-
nization in the two populations. In general, we observe that the effect of dilution is, as expected,
to reduce the level of synchronization in the system. In particular, starting from the PS-FS state
in the fully coupled case, the average values r̄(0) and r̄(1) remain distinct up to some critical
dilution dc ' 0.75 (as shown in Fig. 5 (a)). For intermediate values of the dilution, in the range
0.2 ≤ d ≤ dc, a broken symmetry state is still observable, characterized by two periodically
oscillating fields with associated different attractors (see Figs 4 (a),(e), and (o)). Therefore, we
can safely classify this as a chimera PS1-PS2 state, despite the dilution induces fluctuations
in the macroscopic fields [11, 2]. For larger dilution, above the critical value, the two attractors
essentially merge (as shown in Figs 4 (i)), but both the macroscopic fields are still presenting
clear collective periodic oscillations even at these levels of dilution (see Figs 4 (c)), confirming
the robustness of the PS states in this model.

As a general remark when we considered the influence of dilution on a PS1-PS2 state , we ob-
served a similar scenario, obviously without an initial window where the FS was still observable.

The dilution has a quite peculiar effect on the chaotic, symmetric, state; in fact, up to dilution
d ' 0.2, we did not observe any new effect, as evidenced by the average value of the syn-
chronization order parameters reported in Fig. 5 (b). However, already at d = 0.2 the dilution
induce a symmetry break among the two population dynamics. This is clear in Fig. 4 (b), where
one population is still in a collective chaotic state, similar to the one observed for the globally
coupled system, while the other reveals an attractor analogous to the one seen for the PS state.
This is even more evident by considering the time evolution of the order parameters, while one
population exhibits large oscillations of r(0), similar to the one observed for the chaotic state,
the other reveals more limited oscillations (see Fig. 4 (l)). By further increasing the dilution, the
system show a clear chimera PS1-PS2 state over a range 0.3 ≤ d ≤ 0.5. For d > 0.5 the
two attractors merge in a commons PS state, analogously to the previously considered set of
parameters (as shown in Fig. 4 (d)(h)(p) and (r) for d = 0.8).
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Figure 4: (Color Online) Influence of Dilution. Macroscopic and microscopic characterization
for two different dilutions (namelyd = 0.2 and 0.8) of two states that at d = 0 were FS-PS (first
and third columns) and chaotic (second and fourth columns). In the first row the corresponding
macroscopic attractors are reported, namely, P ≡ E+αĖ vs E are shown; the raster plots are
shown in the second row; the time evolution of the order parameters r(0) and r(1) is reported in
the third row, while that of the macroscopic fields E(0) and E(1) is shown in the forth row. The
variables corresponding to population 0 (resp. 1) are shown in black (resp. red). As regards the
parameter values, (gc = 0.04, gs = 0.1) for the first and third columns, and (gc = 0.08, gs =
0.16) for the second and fourth columns. The employed values of dilution are reported over the
corresponding columns.
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Figure 5: (Color Online) In panels (a), (b) are reported the average values of the order parame-
ters r̄(0) and r̄(1) as a function of the percentage of dilution. In the inset is reported the maximum
Lyapunov exponent as a function of the percentage of dilution. As regards the parameter values,
(gc = 0.04, gs = 0.1) in (a) and (gc = 0.08, gs = 0.16) in (b).

In this latter case we also measured the maximal Lyapunov exponent λM and we observed that
it stays positive for all the considered dilution values (see inset Fig. 4(b)). However, while for
vanishing dilutions the origin of the chaotic dynamics can be considered as a collective effect
induced by the chaotic motion of the coupled macroscopic fields, analogous to the chaotic state
observed for two fully coupled populations [12], for larger dilution we expect chaotic effects to
be present at the level of the single populations, in the form of (microscopic) weak chaos. This
form of chaos disappears in the thermodynamic limit, and it is due to stochastic fluctuations of
the single macroscopic fields induced by finite in-degree effects [11, 2]. At intermediate dilution
both effects are present and the level of chaoticity is bigger with respect to the fully coupled case
(where, λM ' 0.02); this is also evident from Fig. 4 (b) where one attractor appears as being
chaotic, while the other is in a PS state plus finite size fluctuations. To summarize, the system in
absence of dilution, thanks to the interaction of the two populations, exhibits collective chaos, the
dilution induces another form of chaos termed weak chaos, because it present only in systems
of finite size. However, for the chosen system size and parameters the level of chaoticity due to
finite size fluctuations is definitely higher than that due to collective chaos.

5 Noisy Dynamics

In this case, we consider as unperturbed state a network with a small level of dilution d = 0.2
and we study how the noise modify the original dynamics. In absence of noise we consider
once more a chimera PS-FS state and a chaotic state. Please, notice that the small dilution
modifies the phase diagram shown in Fig.1 for the globally coupled case. In particular in order
to observe a chaotic symmetric state, we have been forced to employ parameter values slightly
different from those considered in the previous Section for the same state, namely we used
(gc = 0.08, gs = 0.2).

For the chimera FS-PS, it is evident from Fig. 7 (a) that the complete synchronization in one
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Figure 6: (Color Online) Noise Influence. Macroscopic and microscopic characterization for
two different noise amplitudes, (namely, ∆ = 0.05 and 0.08) of two states that for ∆ → 0
and d = 0.2 were FS-PS (first and third columns) and chaotic (second and fourth columns).
In the rows the same variables as in Fig. 4 are displayed. Macroscopic attractors displayed
by reporting The variables corresponding to population 0 (resp. 1) are shown in black (resp.
red). As regards the parameter values, (gc = 0.04, gs = 0.1) for first and third columns, and
(gc = 0.08, gs = 0.2) for second and fourth columns. The employed noise amplitude are
reported above the corresponding columns. In all cases the dilution was fixed to d = 0.2 and
N = 400.

population persist only up to noise of amplitudes ∆ ' 0.02, however the two populations
behave differently over a quite wide range of noise amplitudes (namely, 0 ≤ ∆ ≤ 0.07).
In all this range we observe chimera states of the type PS1-PS2, obviously with fluctuations
in the macroscopic variables induced by noise, as it is evident from Fig. 6 (a), (e), (i), and
(o). By further increasing the noise amplitude a complete symmetry is recovered but the fields
still exhibit periodic collective oscillations as shown in Fig. 6 (q). Also all the other indicators
suggest that each population is still PS, in particular the synchronization degree remains quite
high r̄(0), r̄(1) ' 0.8 (see also Figs 6 (c),(g), (m) and (q)).

For what concerns the chaotic state, this remains symmetric and characterized by an unique
chaotic attractor up to noises of quite large amplitude, namely ∆ = 0.05. As evident, from
Figs. 6 (b),(f),(l) and (p), all the characteristics of a collectively chaotic state seems present:
overlapping chaotic attractors filling a closed portion of the phase space, anti-phase irregular
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Figure 7: (Color Online) In panels (a), (b) are reported the average values of the order
parameters r̄(0) and r̄(1) as a function of the noise ∆. As regards the parameter values,
(gc = 0.04, gs = 0.1) in (a) and (gc = 0.08, gs = 0.2) in (b). In both cases the dilution
is d = 0.2.

oscillations in the order parameters over long time scales etc. The quite unexpected result is
that by further increasing noise the symmetry of the attractors is broken and the system evolves
towards a chimera PS1-PS2 state, which is observable in the range 0.06 ≤ ∆ ≤ 0.08 (as
shown in Fig. 7 (b)). A specific example of this broken symmetry state is reported in Figs. 6
(d),(h),(n) and (r) for ∆ = 0.08. For even larger noise amplitudes the two attractors converge
towards a common PS state with level of average synchronization r̄ ' 0.6.

6 Discussion

A first important aspect to notice, is that in the present model the Chimera states FS-PS and
PS1-PS2 do not coexist with a stable regime where both populations are FS, as usual for
Chimera states emerging in phase oscillator populations. This implies that in the present case
the initial conditions should not be prepared in some peculiar way to observe the emergence
of broken symmetry states, therefore they are not induced by the choice of the initial conditions
as in most of the examined models. Spontaneously emerging Chimera, in system where the
FS was unstable, have been reported also for chains of Hodgkin-Huxley neurons [18] and of
Stuart-Landau oscillators [5].

As general results, we observe that dilution or noise have a similar influence on the studied
macroscopic dynamics, despite random dilution represents a quenched form of disorder, while
dynamical noise an annealed one. In particular, starting from a broken symmetry state dilu-
tion or noise reduce the level of synchronization in the two population, leading the dynamics
of the two networks to be more and more similar for increasing dilution/noise. On the other
hand, starting from a symmetric state, namely a chaotic one, the role of disorder is to break (at
some intermediate dilution or noise amplitude) the symmetry among the dynamics of the two
populations. Thus in this case, the disorder can promote the emergence of a chimera-like state
(a PS1-PS2) in a range of parameters where the dynamics was fully symmetric in the globally

12



coupled deterministic set-up. For large dilution/noise the system always ends up in a partially
synchronized regime. This can be explained by the fact that the stable state, for the chosen pa-
rameter and for identical coupling among neurons of both populations (namely, gs = gc), is the
regime PS. Indeed, for large dilution or noise the heterogeneity in the synaptic coupling among
neurons lying in one population or in another become less pronounced and the PS emerge.
Theferore, disorder has at some intermediate level a constructive effect inducing the birth of a
more complex (broken symmetry) state from a fully symmetric one, similarly to what reported
in [19], where coherence-resonance chimeras have been observed.

Another interesting aspect, is that the chimera-like states PS1-PS2 are quite robust to dilution,
they can be observed up to 80% of randomly broken links within each population, while previous
results on phase oscillators pointed out that chimeras are observable up to 8% of dilution [6].
The origin of this noticeably difference is probably due to the fact that in this model PS states
can be observed even in sparse networks with an extremely small in-degree ( K ' 10 ) as
shown in [9]. Furthermore, another stabilizing factor is the choice of the cross synaptic current,
in our model the effect of one population on the neurons of the other population is mimicked via
a macroscopic mean field, representing the average synaptic current.

The reported results represent only a first step in the study of the emergence of chimera states
in neural systems characterized by a sparse topology and by the presence of noise. Further
analysis will be required to investigate more realistic models and to understand if chimera states
can have a role in the encoding of information at a population level in brain circuits.

7 Appendix: Accurate event driven map for the two fully cou-

pled populations

In the two symmetrically fully coupled populations setup here discussed we find various kind of
symmetric and symmetry broken states; in particular we find synchronized states. The integra-
tion of such states can be become a difficult issue, due to numerical round-off it can become
extremely difficult to determine the next firing neuron, thus to increase the numerical accuracy
and to avoid spurious clustering due to numerical round-off, we implemented the following inte-
gration scheme.

In particular, instead of integrating the membrane potentials, we performed the integration of the
logarithm of the difference of two successive neurons. This transformation is uniquely defined in
globally coupled systems, since the order of the neurons passing threshold is preserved in time.
Therefore, it is possible to define an ordered list of the potentials and, on this basis, to define

uniquely the “neighbours” of a neuron. Given a set of N membrane potentials
{

x
(k)
j

}

j=1,...,N
,

with k = 0, 1 depending on the considered family, we introduce at a generic time t the following
N + 1 auxiliary variables:

ω
(k)
1 (t) = ln

[

1 − x
(k)
1 (t)

]

ω
(k)
j (t) = ln

[

x
(k)
j−1(t) − x

(k)
j (t)

]

j = 2, . . . , N
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ω
(k)
N+1(t) = ln

[

x
(k)
N (t)

]

where the threshold (resp. reset) value is xth = 1 (resp. xR = 0) and x
(k)
1 is the next to

threshold neuron.

Since we would like to define an event driven map for the two coupled families, it is necessary
to find which neuron is going to fire next and then evolve the membrane potentials of the two
populations untile the successive spike emission. The evolution of the two populations is differ-
ent and it depends on the fact that the firing neuron belongs to the considered family or not. Let
us schematize the algorithm in three steps:

1 As a first step we compare x
(0)
1 with x

(1)
1 to identify to which family the firing neuron

belongs.

2 As a second step we check if the firing neuron belongs to a family which has already fired
at the previous event or not. Depending on this, we have two possible alternatives: if the
next and previous firing neurons belong to the same family we iterate the network as in
point (a) below, otherwise as in point (b).

2.1 Let us suppose that the firing population is the family (0). We evolve all the N + 1

variables
{

ω
(0)
j

}

j=1,...,N+1
for the firing family, while, for the other family, it is suffi-

cient to evolve just the variables ω
(1)
1 and ω

(1)
N+1. All the above mentioned variables

are evolved for a lapse of time corresponding to the interval elapsed from the last
firing event of the family (0).

2.2 If the firing family is (1) and previously fired a neuron of family (0), the evolution is

more complicated. The variables ω
(k)
1 and ω

(k)
N+1 of both families are integrated for

the time interval elapsed from the last firing time of family (0). The N − 1 variables
{

ω
(1)
j

}

j=2,...,N
should be instead evolved for a longer time corresponding to the

last interspike interval associated to family (1), because these variables have not
been updated since the last firing of family (1).

3 The firing family is iterated in the comoving frame: this amounts to update the membrane
potentials and to shift the index of all neurons by one unit. The membrane potentials of
the other family are updated in the fixed reference frame.

4 The simulation is iterated by repeating the above three steps.

In order to evolve the a linearized system the previous algorithm is no more effective since now
it is necessary to evolve all the variables at each time step in order to calculate the linearized
equations in the tangent space. In this case we use directly the difference of the membrane
potentials of two successive neurons instead of the logarithm. We still search for the first to fire
neuron between the two populations and we treat differently the variables of the two populations
at each time step depending on which neuron has emitted a spike previously. As in the previous
case we employ different reference frames for the firing or not firing family (see point 3 above).
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