259 research outputs found

    School Food Service Costs: Does Location Matter?

    Get PDF
    Over 30 million lunches and 9.8 million breakfasts are served every day to children in participating American schools through the USDA National School Lunch and School Breakfast Programs. It is challenging for participating local school food authorities (SFAs) to serve appealing, healthful meals while covering food, labor, and other operating costs with USDA reimbursements. But it may be more difficult for some SFAs than others due to cost differences across locations. Analysis of data from a large national sample reveals that after controlling for differences in SFA characteristics, sharp differences in costs remained among rural, urban, and suburban SFAs and across regions. The highest costs occurred in Mid-Atlantic, suburban SFAs and the lowest cost existed in southwest, urban SFAs. Differences in food costs explained the largest share of this variation.school meal costs, cost function, SFA, Food Consumption/Nutrition/Food Safety,

    Multitouch Experiment Instruction and Self-Regulation: Promoting Self-Regulation with a Multitouch Experiment Instruction on the topic of water analysis

    Get PDF
    In context of Education for Sustainable Development (ESD), the range of experiments offered by the Schülerlabor NanoBioLab at Saarland University was expanded to include an experiment on the topic of water analysis, which provided the basis of the intervention. In addition to the analogue experiment instruction, there is a digital version which is presented as a Multitouch Experiment Instruction (MEI). MEIs are digitally enriched, interactive experiment instructions that accompany the cognitive learning process of pupils and promote competencies in the digital world (Seibert et al., 2020). In this study, we analysed whether the MEI could support self-regulated learning in an indirect support approach by considering different hierarchical levels of self-regulation in the design of the materials. The results show a significant acquisition of self-regulatory competences of learners in grades ten and eleven by using the MEI compared to the analogue version

    Universal Rights and Wrongs

    Get PDF
    This paper argues for the important role of customers as a source of competitive advantage and firm growth, an issue which has been largely neglected in the resource-based view of the firm. It conceptualizes Penrose’s (1959) notion of an ‘inside track’ and illustrates how in-depth knowledge about established customers combines with joint problem-solving activities and the rapid assimilation of new and previously unexploited skills and resources. It is suggested that the inside track represents a distinct and perhaps underestimated way of generating rents and securing long-term growth. This also implies that the sources of sustainable competitive advantage in important respects can be sought in idiosyncratic interfirm relationships rather than within the firm itself

    The Ubiquitin Ligase Ubr2, a Recognition E3 Component of the N-End Rule Pathway, Stabilizes Tex19.1 during Spermatogenesis

    Get PDF
    Ubiquitin E3 ligases target their substrates for ubiquitination, leading to proteasome-mediated degradation or altered biochemical properties. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule proteolytic pathway, recognizes proteins with N-terminal destabilizing residues and plays an important role in spermatogenesis. Tex19.1 (also known as Tex19) has been previously identified as a germ cell-specific protein in mouse testis. Here we report that Tex19.1 forms a stable protein complex with Ubr2 in mouse testes. The binding of Tex19.1 to Ubr2 is independent of the second position cysteine of Tex19.1, a putative target for arginylation by the N-end rule pathway R-transferase. The Tex19.1-null mouse mutant phenocopies the Ubr2-deficient mutant in three aspects: heterogeneity of spermatogenic defects, meiotic chromosomal asynapsis, and embryonic lethality preferentially affecting females. In Ubr2-deficient germ cells, Tex19.1 is transcribed, but Tex19.1 protein is absent. Our results suggest that the binding of Ubr2 to Tex19.1 metabolically stabilizes Tex19.1 during spermatogenesis, revealing a new function for Ubr2 outside the conventional N-end rule pathway

    Carbon budget of the Harvard Forest Long- Term Ecological Research site: pattern, process, and response to global change

    Full text link
    How, where, and why carbon (C) moves into and out of an ecosystem through time are long- standing questions in biogeochemistry. Here, we bring together hundreds of thousands of C- cycle observations at the Harvard Forest in central Massachusetts, USA, a mid- latitude landscape dominated by 80- 120- yr- old closed- canopy forests. These data answered four questions: (1) where and how much C is presently stored in dominant forest types; (2) what are current rates of C accrual and loss; (3) what biotic and abiotic factors contribute to variability in these rates; and (4) how has climate change affected the forest- s C cycle? Harvard Forest is an active C sink resulting from forest regrowth following land abandonment. Soil and tree biomass comprise nearly equal portions of existing C stocks. Net primary production (NPP) averaged 680- 750 g C·m- 2·yr- 1; belowground NPP contributed 38- 47% of the total, but with large uncertainty. Mineral soil C measured in the same inventory plots in 1992 and 2013 was too heterogeneous to detect change in soil- C pools; however, radiocarbon data suggest a small but persistent sink of 10- 30 g C·m- 2·yr- 1. Net ecosystem production (NEP) in hardwood stands averaged ~300 g C·m- 2·yr- 1. NEP in hemlock- dominated forests averaged ~450 g C·m- 2·yr- 1 until infestation by the hemlock woolly adelgid turned these stands into a net C source. Since 2000, NPP has increased by 26%. For the period 1992- 2015, NEP increased 93%. The increase in mean annual temperature and growing season length alone accounted for ~30% of the increase in productivity. Interannual variations in GPP and NEP were also correlated with increases in red oak biomass, forest leaf area, and canopy- scale light- use efficiency. Compared to long- term global change experiments at the Harvard Forest, the C sink in regrowing biomass equaled or exceeded C cycle modifications imposed by soil warming, N saturation, and hemlock removal. Results of this synthesis and comparison to simulation models suggest that forests across the region are likely to accrue C for decades to come but may be disrupted if the frequency or severity of biotic and abiotic disturbances increases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/3/ecm1423_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/2/ecm1423-sup-0001-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/1/ecm1423.pd

    Functional Induction of the Cystine-Glutamate Exchanger System Xc- Activity in SH-SY5Y Cells by Unconjugated Bilirubin

    Get PDF
    We have previously reported that exposure of SH-SY5Y neuroblastoma cells to unconjugated bilirubin (UCB) resulted in a marked up-regulation of the mRNA encoding for the Na+ -independent cystine∶glutamate exchanger System Xc− (SLC7A11 and SLC3A2 genes). In this study we demonstrate that SH-SY5Y cells treated with UCB showed a higher cystine uptake due to a significant and specific increase in the activity of System Xc−, without the contribution of the others two cystine transporters (XAG− and GGT) reported in neurons. The total intracellular glutathione content was 2 folds higher in the cells exposed to bilirubin as compared to controls, suggesting that the internalized cystine is used for gluthathione synthesis. Interestingly, these cells were significantly less sensitive to an oxidative insult induced by hydrogen peroxide. If System Xc− is silenced the protection is lost. In conclusion, these results suggest that bilirubin can modulate the gluthathione levels in neuroblastoma cells through the induction of the System Xc−, and this renders the cell less prone to oxidative damage

    A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility

    Get PDF
    The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes

    Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis

    Get PDF
    Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent protein secretion by the Gram-positive soil bacterium Bacillus subtilis, which encounters widely differing salt concentrations in its natural habitats. The results show that environmental salinity determines the specificity and need for Tat-dependent secretion of the Dyp-type peroxidase YwbN in B. subtilis. Under high salinity growth conditions, at least three Tat translocase subunits, namely TatAd, TatAy and TatCy, are involved in the secretion of YwbN. Yet, a significant level of Tat-independent YwbN secretion is also observed under these conditions. When B. subtilis is grown in medium with 1% NaCl or without NaCl, the secretion of YwbN depends strictly on the previously described “minimal Tat translocase” consisting of the TatAy and TatCy subunits. Notably, in medium without NaCl, both tatAyCy and ywbN mutants display significantly reduced exponential growth rates and severe cell lysis. This is due to a critical role of secreted YwbN in the acquisition of iron under these conditions. Taken together, our findings show that environmental conditions, such as salinity, can determine the specificity and need for the secretion of a bacterial Tat substrate
    corecore