406 research outputs found

    Overview of the coordinated ground-based observations of Titan during the Huygens mission

    Get PDF
    Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs. These observations consisted of three different categories: (1) radio telescope tracking of the Huygens signal at 2040 MHz, (2) observations of the atmosphere and surface of Titan, and (3) attempts to observe radiation emitted during the Huygens Probe entry into Titan's atmosphere. The Probe radio signal was successfully acquired by a network of terrestrial telescopes, recovering a vertical profile of wind speed in Titan's atmosphere from 140 km altitude down to the surface. Ground-based observations brought new information on atmosphere and surface properties of the largest Saturnian moon. No positive detection of phenomena associated with the Probe entry was reported. This paper reviews all these measurements and highlights the achieved results. The ground-based observations, both radio and optical, are of fundamental importance for the interpretation of results from the Huygens mission

    Whole-genome, deep pyrosequencing analysis of a duck influenza A virus evolution in swine cells.

    Get PDF
    We studied the sub-population level evolution of a duck influenza A virus isolate during passage in swine tracheal cells. The complete genomes of the A/mallard/Netherlands/10-Nmkt/1999 strain and its swine cell-passaged descendent were analysed by 454 pyrosequencing with coverage depth ranging from several hundred to several thousand reads at any point. This allowed characterization of defined minority sub-populations of gene segments 2, 3, 4, 5, 7, and 8 present in the original isolate. These minority sub-populations ranged between 9.5% (for segment 2) and 46% (for segment 4) of their respective gene segments in the parental stock. They were likely contributed by one or more viruses circulating within the same area, at the same period and in the same or a sympatric host species. The minority sub-populations of segments 3, 4, and 5 became extinct upon viral passage in swine cells, whereas the minority sub-populations of segments 2, 7 and 8 completely replaced their majority counterparts. The swine cell-passaged virus was therefore a three-segment reassortant and also harboured point mutations in segments 3 and 4. The passaged virus was more homogenous than the parental stock, with only 17 minority single nucleotide polymorphisms present above 5% frequency across the whole genome. Though limited here to one sample, this deep sequencing approach highlights the evolutionary versatility of influenza viruses whereby they exploit their genetic diversity, predilection for mixed infection and reassortment to adapt to a new host environmental niche.This work was supported by a grant from DEFRA and HEFCE under the Veterinary Training and Research Initiative to the Cambridge Infectious Diseases Consortium (VB, LT), BBSRC grants BB/H014306/1 and BB/G00479X/1 (LT), and the French Ministry of Agriculture, INRA and the French Région Midi-Pyrénées (GC, J-LG, VB).This is the accepted version of the original version available at: http://dx.doi.org/10.1016/j.meegid.2013.04.03

    Efficacy of a new carvacrol-based product on Campylobacter jejuni in challenge test in vivo and impact on the whole caecal microbiota

    Get PDF
    Efficacy of a new carvacrol-based product on Campylobacter jejuni in challenge test in vivo and impact on the whole caecal microbiota. 6. International Conference on Poultry Intestinal Healt

    Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses

    Get PDF
    International audienceLow temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them

    SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population

    Get PDF
    International audienceBackground - Progress in genetics and breeding in pea still suffers from the limited availability of molecular resources. SNP markers that can be identified through affordable sequencing processes, without the need for prior genome reduction or a reference genome to assemble sequencing data would allow the discovery and genetic mapping of thousands of molecular markers. Such an approach could significantly speed up genetic studies and marker assisted breeding for non-model species. Results - A total of 419,024 SNPs were discovered using HiSeq whole genome sequencing of four pea lines, followed by direct identification of SNP markers without assembly using the discoSnp tool. Subsequent filtering led to the identification of 131,850 highly designable SNPs, polymorphic between at least two of the four pea lines. A subset of 64,754 SNPs was called and genotyped by short read sequencing on a subpopulation of 48 RILs from the cross 'Baccara' x 'PI180693'. This data was used to construct a WGGBS-derived pea genetic map comprising 64,263 markers. This map is collinear with previous pea consensus maps and therefore with the Medicago truncatula genome. Sequencing of four additional pea lines showed that 33 % to 64 % of the mapped SNPs, depending on the pairs of lines considered, are polymorphic and can therefore be useful in other crosses. The subsequent genotyping of a subset of 1000 SNPs, chosen for their mapping positions using a KASP™ assay, showed that almost all generated SNPs are highly designable and that most (95 %) deliver highly qualitative genotyping results. Using rather low sequencing coverages in SNP discovery and in SNP inferring did not hinder the identification of hundreds of thousands of high quality SNPs. Conclusions - The development and optimization of appropriate tools in SNP discovery and genetic mapping have allowed us to make available a massive new genomic resource in pea. It will be useful for both fine mapping within chosen QTL confidence intervals and marker assisted breeding for important traits in pea improvement

    Whole-genome sequencing reveals insights into the adaptation of French Charolais cattle to Cuban tropical conditions

    Get PDF
    In the early 20th century, Cuban farmers imported Charolais cattle (CHFR) directly from France. These animals are now known as Chacuba (CHCU) and have become adapted to the rough environmental tropical conditions in Cuba. These conditions include long periods of drought and food shortage with extreme temperatures that European taurine cattle have difficulty coping with. In this study, we used whole-genome sequence data from 12 CHCU individuals together with 60 whole-genome sequences from six additional taurine, indicus and crossed breeds to estimate the genetic diversity, structure and accurate ancestral origin of the CHCU animals. Although CHCU animals are assumed to form a closed population, the results of our admixture analysis indicate a limited introgression of Bos indicus. We used the extended haplotype homozygosity (EHH) approach to identify regions in the genome that may have had an important role in the adaptation of CHCU to tropical conditions. Putative selection events occurred in genomic regions with a high proportion of Bos indicus, but they were not sufficient to explain adaptation of CHCU to tropical conditions by Bos indicus introgression only. EHH suggested signals of potential adaptation in genomic windows that include genes of taurine origin involved in thermogenesis (ATP9A, GABBR1, PGR, PTPN1 and UCP1) and hair development (CCHCR1 and CDSN). Within these genes, we identified single nucleotide polymorphisms (SNPs) that may have a functional impact and contribute to some of the observed phenotypic differences between CHCU and CHFR animals. Whole-genome data confirm that CHCU cattle are closely related to Charolais from France (CHFR) and Canada, but also reveal a limited introgression of Bos indicus genes in CHCU. We observed possible signals of recent adaptation to tropical conditions between CHCU and CHFR founder populations, which were largely independent of the Bos indicus introgression. Finally, we report candidate genes and variants that may have a functional impact and explain some of the phenotypic differences observed between CHCU and CHFR cattle
    • …
    corecore