61 research outputs found

    CCD camera system for cometary research

    Get PDF
    The objective is to upgrade the NASA/GSFC 36 inch telescope instrumentation, primarily with a new charge coupled device (CCD) camera system, to permit an effective monitoring program of cometary activity by means of narrowband imaging and spectroscopic techniques. Researchers have twice taken delivery of the CCD camera system from Princeton Scientific Instruments and twice returned it within six weeks for repair. During the times they had the camera system in the lab, they measured the instrumental performance of the TEK 512 x 512 CCD chip (e.g., readout noise, dark current, etc) and developed the complete operational software for the camera system plus several useful observing and data reduction routines for use at the telescope. The CCD camera system is controlled by an IBM-AT computer. The peripheral equipment and software to permit the efficient transfer of large amounts of data to the LASP's computers (VAXs) and subsequent timely reductions are also in place. The Io torus (S II) emission was monitored with a Fabry-Perot scanning spectrometer, in conjunction with the International Jupiter Watch. The CCD camera system will be coupled to a narrowband interference filter imager and a long-slit spectrograph to provide regular and well-calibrated spatial and spectral observations of comets

    Time-lapse CCD imagery of plasma-tail motions in Comet Austin

    Get PDF
    The appearance of the bright comet Austin 1989c1 in April-May of 1990 allowed us to test a new imaging instrument at the Joint Observatory for Cometary Research (JOCR). It is a 300mm lens/charge coupled device (CCD) system with interference filters appropriate for cometary emissions. The 13 frames were made into a time-lapse movie showing the evolution of the plasma tail. We were able to follow at least two large-scale waves out through the main tail structure. During the sequence, we saw two new tail rays form and undergo similar wave motion

    Luminosities of H alpha emitting regions in a pair of interacting galaxies in the Bootes void

    Get PDF
    Luminosities of H alpha emission from a pair of interacting galaxies in the low density environment of the Bootes void are presented. CG 692 (IRAS 1519+5050) has an H alpha luminosity of 2 x 10(exp 42) ergs s(exp -1), indicating a star formation rate of 18.4 solar mass yr(exp -1). Individual extranuclear H alpha regions have luminosities of approximately 10(exp 40) ergs s(exp -1). These luminosities are similar to those found for H II regions in bright, late-type galaxies in more densely populated parts of the Universe

    Radial Velocity Observations of the Extended Lunar Sodium Tail

    Get PDF
    We report the first velocity resolved sodium 5889.950 Å line profile observations of the lunar sodium tail observed in the anti-lunar direction near new Moon. These observations were made on 29 March 2006, 27 April 2006 and 28 April 2006 from Pine Bluff (WI) observatory with a double etalon Fabry-Perot spectrometer at a resolving power of ∼80,000. The observations were made within 2–14 hours from new Moon, pointing near the anti-lunar point. The average observed radial velocity of the lunar sodium tail in the vicinity of the anti-lunar point for the three nights reported was 12.4 km s−1 (from geocentric zero). The average Doppler width of a single Gaussian fit to the emission line was 7.6 km s−1. In some cases the line profile appears asymmetric, with excess lunar sodium emission at higher velocity (∼18 km s−1 from geocentric zero) that is not accounted for by our single Gaussian fit to the emission

    High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    Get PDF
    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 ) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms

    Sodium Atoms in the Lunar Exotail: Observed Velocity and Spatial Distributions

    Get PDF
    The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be ~ 12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 x 15 deg region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3 deg east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days

    The MAVEN Magnetic Field Investigation

    Get PDF
    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight

    Thermodynamics of 3+ metal cation containing systems

    Get PDF
    xi, 149 leaves : ill. ; 29 cm.Measurements of relative densities and relative massic heat capacities have been made for several aqueous rare earth chloride and perchlorate systems. Densities and relative massic heat capacities of acidified aqueous perchlorates of yttrium, ytterbium, dysprosium, and samarium as well as the chlorides of yttrium, ytterbium, dysprosium, samarium and gadolinium have been measured at the temperatures 288.15, 298.15, 313.5 and 328.15 K. Using the density and massic heat capacity data, apparent molar volumes and apparent molar heat capacities have been calculated. These data have been modeled using the Pitzer ion interaction approach as well as the Helgeson, Kirkham and Flowers equations of state. Apparent molar volumes and apparent molar heat capacities previously presented in the literature have been compared to the data presented here. single ion apparent molar volume and apparent molar heat capacity contributions were calculated. Infinite dilution properties have been compared to existing models used to predict infinite dilution properties. Densities of aqueous perchloric acid and ytterbium perchlorate at the temperatures from 348.15 to 423.15 K and at pressured from 10.00 to 30.00 MPa were measured. Apparante molar volumes were calculated from the density measurements. The apparent molar volume data were modeled using Pitzer ion interaction theory as well as HKF equations of state. Models presented are compared to existing models

    Observations of interplanetary dust by the Juno magnetometer investigation

    Get PDF
    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving with an apparent angular rate of between 2 and 18,000 arcsec/s were recorded. Among the objects detected were a small group of objects tracked briefly in close proximity to the spacecraft. The trajectory of these objects demonstrates that they originated on the Juno spacecraft, evidently excavated by micrometeoroid impacts on the solar arrays. The majority of detections occurred just prior to and shortly after Juno's transit of the asteroid belt. This rather novel detection technique utilizes the Juno spacecraft's prodigious 60 sq. m of solar array as a dust detector and provides valuable information on the distribution and motion of interplanetary (greater than a micron) dust. Plain Language Summary: The Juno magnetometer investigation uses star cameras co-located with the magnetic sensors at the outer end of one of Juno's solar arrays. These cameras compare images with an onboard star catalog to determine the orientation of the sensors in inertial space. They also serendipitously recorded multiple images of small particles excavated from the spacecraft by high-velocity dust impacts. We trace their trajectories back in time to demonstrate that they evolved from the spacecraft. This allows us to use the vast collecting area of Juno's solar arrays (60 sq. m)as a novel dust detector, sensitive to particles with a mass range never before measured in situ

    Convection, Thermal Bifurcation, and the Colors of A stars

    Get PDF
    Broad-band ultraviolet photometry from the TD-1 satellite and low dispersion spectra from the short wavelength camera of IUE have been used to investigate a long-standing proposal of Bohm-Vitense that the normal main sequence A- and early-F stars may divide into two different temperature sequences: (1) a high temperature branch (and plateau) comprised of slowly rotating convective stars, and (2) a low temperature branch populated by rapidly rotating radiative stars. We find no evidence from either dataset to support such a claim, or to confirm the existence of an "A-star gap" in the B-V color range 0.22 <= B-V <= 0.28 due to the sudden onset of convection. We do observe, nonetheless, a large scatter in the 1800--2000 A colors of the A-F stars, which amounts to ~0.65 mags at a given B-V color index. The scatter is not caused by interstellar or circumstellar reddening. A convincing case can also be made against binarity and intrinsic variability due to pulsations of delta Sct origin. We find no correlation with established chromospheric and coronal proxies of convection, and thus no demonstrable link to the possible onset of convection among the A-F stars. The scatter is not instrumental. Approximately 0.4 mags of the scatter is shown to arise from individual differences in surface gravity as well as a moderate spread (factor of ~3) in heavy metal abundance and UV line blanketing. A dispersion of ~0.25 mags remains, which has no clear and obvious explanation. The most likely cause, we believe, is a residual imprecision in our correction for the spread in metal abundances. However, the existing data do not rule out possible contributions from intrinsic stellar variability or from differential UV line blanketing effects owing to a dispersion in microturbulent velocity.Comment: 40 pages, 14 figures, 1 table, AAS LaTex, to appear in The Astrophysical Journa
    • …
    corecore