22 research outputs found

    Unequal Crossover Dynamics in Discrete and Continuous Time

    Full text link
    We analyze a class of models for unequal crossover (UC) of sequences containing sections with repeated units that may differ in length. In these, the probability of an `imperfect' alignment, in which the shorter sequence has d units without a partner in the longer one, scales like q^d as compared to `perfect' alignments where all these copies are paired. The class is parameterized by this penalty factor q. An effectively infinite population size and thus deterministic dynamics is assumed. For the extreme cases q=0 and q=1, and any initial distribution whose moments satisfy certain conditions, we prove the convergence to one of the known fixed points, uniquely determined by the mean copy number, in both discrete and continuous time. For the intermediate parameter values, the existence of fixed points is shown.Comment: 25 pages, 1 figure; to appear in J. Math. Bio

    Invaded cluster algorithm for critical properties of periodic and aperiodic planar Ising models

    Full text link
    We demonstrate that the invaded cluster algorithm, recently introduced by Machta et al, is a fast and reliable tool for determining the critical temperature and the magnetic critical exponent of periodic and aperiodic ferromagnetic Ising models in two dimensions. The algorithm is shown to reproduce the known values of the critical temperature on various periodic and quasiperiodic graphs with an accuracy of more than three significant digits. On two quasiperiodic graphs which were not investigated in this respect before, the twelvefold symmetric square-triangle tiling and the tenfold symmetric T\"ubingen triangle tiling, we determine the critical temperature. Furthermore, a generalization of the algorithm to non-identical coupling strengths is presented and applied to a class of Ising models on the Labyrinth tiling. For generic cases in which the heuristic Harris-Luck criterion predicts deviations from the Onsager universality class, we find a magnetic critical exponent different from the Onsager value. But also notable exceptions to the criterion are found which consist not only of the exactly solvable cases, in agreement with a recent exact result, but also of the self-dual ones and maybe more.Comment: 15 pages, 5 figures; v2: Fig. 5b replaced, minor change

    Mutation-Selection Balance: Ancestry, Load, and Maximum Principle

    Full text link
    We show how concepts from statistical physics, such as order parameter, thermodynamic limit, and quantum phase transition, translate into biological concepts in mutation-selection models for sequence evolution and can be used there. The article takes a biological point of view within a population genetics framework, but contains an appendix for physicists, which makes this correspondence clear. We analyze the equilibrium behavior of deterministic haploid mutation-selection models. Both the forward and the time-reversed evolution processes are considered. The stationary state of the latter is called the ancestral distribution, which turns out as a key for the study of mutation-selection balance. We find that it determines the sensitivity of the equilibrium mean fitness to changes in the fitness values and discuss implications for the evolution of mutational robustness. We further show that the difference between the ancestral and the population mean fitness, termed mutational loss, provides a measure for the sensitivity of the equilibrium mean fitness to changes in the mutation rate. For a class of models in which the number of mutations in an individual is taken as the trait value, and fitness is a function of the trait, we use the ancestor formulation to derive a simple maximum principle, from which the mean and variance of fitness and the trait may be derived; the results are exact for a number of limiting cases, and otherwise yield approximations which are accurate for a wide range of parameters. These results are applied to (error) threshold phenomena caused by the interplay of selection and mutation. They lead to a clarification of concepts, as well as criteria for the existence of thresholds.Comment: 54 pages, 15 figures; to appear in Theor. Pop. Biol. 61 or 62 (2002

    Unsupervised Classification of SAR Images using Hierarchical Agglomeration and EM

    Get PDF
    We implement an unsupervised classification algorithm for high resolution Synthetic Aperture Radar (SAR) images. The foundation of algorithm is based on Classification Expectation-Maximization (CEM). To get rid of two drawbacks of EM type algorithms, namely the initialization and the model order selection, we combine the CEM algorithm with the hierarchical agglomeration strategy and a model order selection criterion called Integrated Completed Likelihood (ICL). We exploit amplitude statistics in a Finite Mixture Model (FMM), and a Multinomial Logistic (MnL) latent class label model for a mixture density to obtain spatially smooth class segments. We test our algorithm on TerraSAR-X data

    Degree correlations in directed scale-free networks

    Get PDF
    Scale-free networks, in which the distribution of the degrees obeys a power-law, are ubiquitous in the study of complex systems. One basic network property that relates to the structure of the links found is the degree assortativity, which is a measure of the correlation between the degrees of the nodes at the end of the links. Degree correlations are known to affect both the structure of a network and the dynamics of the processes supported thereon, including the resilience to damage, the spread of information and epidemics, and the efficiency of defence mechanisms. Nonetheless, while many studies focus on undirected scale-free networks, the interactions in real-world systems often have a directionality. Here, we investigate the dependence of the degree correlations on the power-law exponents in directed scale-free networks. To perform our study, we consider the problem of building directed networks with a prescribed degree distribution, providing a method for proper generation of power-law-distributed directed degree sequences. Applying this new method, we perform extensive numerical simulations, generating ensembles of directed scale-free networks with exponents between~2 and~3, and measuring ensemble averages of the Pearson correlation coefficients. Our results show that scale-free networks are on average uncorrelated across directed links for three of the four possible degree-degree correlations, namely in-degree to in-degree, in-degree to out-degree, and out-degree to out-degree. However, they exhibit anticorrelation between the number of outgoing connections and the number of incoming ones. The findings are consistent with an entropic origin for the observed disassortativity in biological and technological networks.Comment: 10 pages, 5 figure

    The DAC system and associations with acute leukemias and myelodysplastic syndromes

    Get PDF
    Imbalances of histone acetyltransferase (HAT) and deacetylase activity (DAC) that result in deregulated gene expression are commonly observed in leukemias. These alterations provide the basis for novel therapeutic approaches that target the epigenetic mechanisms implicated in leukemogenesis. As the acetylation status of histones has been linked to transcriptional regulation of genes involved particularly in differentiation and apoptosis, DAC inhibitors (DACi) have attracted considerable attention for treatment of hematologic malignancies. DACi encompass a structurally diverse family of compounds that are being explored as single agents as well as in combination with chemotherapeutic drugs, small molecule inhibitors of signaling pathways and hypomethylating agents. While DACi have shown clear evidence of activity in acute myeloid leukemia, myelodysplastic syndromes and lymphoid malignancies, their precise role in treatment of these different entities remain to be elucidated. Successful development of these compounds as elements of novel targeted treatment strategies for leukemia will require that clinical studies be performed in conjunction with translational research including efforts to identify predictive biomarkers

    A mixture likelihood approach for generalized linear models

    Full text link
    A mixture model approach is developed that simultaneously estimates the posterior membership probabilities of observations to a number of unobservable groups or latent classes, and the parameters of a generalized linear model which relates the observations, distributed according to some member of the exponential family, to a set of specified covariates within each Class. We demonstrate how this approach handles many of the existing latent class regression procedures as special cases, as well as a host of other parametric specifications in the exponential family heretofore not mentioned in the latent class literature. As such we generalize the McCullagh and Nelder approach to a latent class framework. The parameters are estimated using maximum likelihood, and an EM algorithm for estimation is provided. A Monte Carlo study of the performance of the algorithm for several distributions is provided, and the model is illustrated in two empirical applications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45934/1/357_2005_Article_BF01202266.pd
    corecore