73 research outputs found

    The role of fibroblast senescence in cutaneous immune ageing

    Get PDF
    Senescence is a state of irreversible cell cycle arrest that arises in response to DNA damage and protects cells from neoplastic transformation. As a consequence, senescent cells accumulate in human tissues during ageing and exhibit a unique senescence- associated secretory phenotype or ‘SASP’. This SASP is comprised of immunomodulatory molecules and is the main way senescent cells contribute to age- related pathology such as atherosclerosis, diabetes, sarcopenia and osteoporosis. // Antigen-specific immunity declines with age and increases the risk of cancer, infection and vaccination failure. This decline can be quantified in the skin by measuring the delayed-type hypersensitivity (DTH) response to a recall antigen like varicella zoster virus (VZV)-glycoprotein. The overarching aim of this work, therefore, is to determine whether the accumulation of senescent stromal cells in the skin contributes to a decline in antigen-specific cutaneous immunity. // Early in this study, limitations of existing markers for the detection of senescent cells in human skin were identified and the use of telomere-associated γH2AX foci (TAF) was validated as an alternative marker in frozen sections. Using TAF, senescence in each compartment of the skin was quantified and a strong association was found between the number of TAF+ fibroblasts in the interstitial dermis and poorer DTH responses to intradermal injection of VZV-glycoprotein. Interestingly, it was found that the early inflammation generated by the trauma of intradermal injection resulted in the clearance of senescent cells from the interstitial dermis of old skin. A population of NK-like CD8+ T- cells present in the dermis of old skin were identified and may be responsible for their clearance. Finally, it was demonstrated that systemic treatment with p38MAPK inhibitor losmapimod reduced the SASP gene signature, decreased the expression of activatory NK-R ligand MICA/B and protected senescent interstitial cells from inflammation-induced clearance in old human skin. Together, these findings provide evidence that support the hypothesis that senescent fibroblasts contribute to the decline in antigen-specific immunity in human skin during ageing

    Assessment at UK medical schools varies substantially in volume, type and intensity and correlates with postgraduate attainment

    Get PDF
    BACKGROUND: In the United Kingdom (UK), medical schools are free to develop local systems and policies that govern student assessment and progression. Successful completion of an undergraduate medical degree results in the automatic award of a provisional licence to practice medicine by the General Medical Council (GMC). Such a licensing process relies heavily on the assumption that individual schools develop similarly rigorous assessment policies. Little work has evaluated variability of undergraduate medical assessment between medical schools. That absence is important in the light of the GMC's recent announcement of the introduction of the UKMLA (UK Medical Licensing Assessment) for all doctors who wish to practise in the UK. The present study aimed to quantify and compare the volume, type and intensity of summative assessment across medicine (A100) courses in the United Kingdom, and to assess whether intensity of assessment correlates with the postgraduate attainment of doctors from these schools. METHODS: Locally knowledgeable students in each school were approached to take part in guided-questionnaire interviews via telephone or Skype(TM). Their understanding of assessment at their medical school was probed, and later validated with the assessment department of the respective medical school. We gathered data for 25 of 27 A100 programmes in the UK and compared volume, type and intensity of assessment between schools. We then correlated these data with the mean first-attempt score of graduates sitting MRCGP and MRCP(UK), as well as with UKFPO selection measures. RESULTS: The median written assessment volume across all schools was 2000 min (mean = 2027, SD = 586, LQ = 1500, UQ = 2500, range = 1000-3200) and 1400 marks (mean = 1555, SD = 463, LQ = 1200, UQ = 1800, range = 1100-2800). The median practical assessment volume was 400 min (mean = 472, SD = 207, LQ = 400, UQ = 600, range = 200-1000). The median intensity (minutes per mark ratio) of summative written assessment was 1.24 min per mark (mean = 1.28, SD = 0.30, LQ = 1.11, UQ = 1.37, range = 0.85-2.08). An exploratory analysis suggested a significant correlation of total assessment time with mean first-attempt score on both the knowledge and the clinical assessments of MRCGP and of MRCP(UK). CONCLUSIONS: There are substantial differences in the volume, format and intensity of undergraduate assessment between UK medical schools. These findings suggest a potential for differences in the reliability of detecting poorly performing students, or differences in identifying and stratifying academically equivalent students for ranking in the Foundation Programme Application System (FPAS). Furthermore, these differences appear to directly correlate with performance in postgraduate examinations. Taken together, our findings highlight highly variable local assessment procedures that warrant further investigation to establish their potential impact on students

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    • …
    corecore