70 research outputs found

    Molecular dynamics simulations and docking of non-nucleoside reverse transcriptase inhibitors (NNRTIs): a possible approach to personalized HIV treatment : from 7th German Conference on Chemoinformatics: 25 CIC-Workshop Goslar, Germany, 6 - 8 November 2011

    Get PDF
    The human immunodeficiency virus (HIV) is currently ranked sixth in the worldwide causes of death [1]. One treatment approach is to inhibit reverse transcriptase (RT), an enzyme essential for reverse transcription of viral RNA into DNA before integration into the host genome [2]. By using non-nucleoside RT inhibitors (NNRTIs) [3], which target an allosteric binding site, major side effects can be evaded. Unfortunately, high genetic variability of HIV in combination with selection pressure introduced by drug treatment enables the virus to develop resistance against this drug class by developing point mutations. This situation necessitates treatment with alternative NNRTIs that target the particular RT mutants encountered in a patient. Previously, proteochemometric approaches have demonstrated some success in predicting binding of particular NNRTIs to individual mutants; however a structurebased approach may help to further improve the predictive success of such models. Hence, our aim is to rationalize the experimental activity of known NNRTIs against a variety of RT mutants by combining molecular modeling, long-timescale atomistic molecular dynamics (MD) simulation sampling and ensemble docking. Initial control experiments on known inhibitor-RT mutant complexes using this protocol were successful, and the predictivity for further complexes is currently being evaluated. In addition to predictive power, MD simulations of multiple RT mutants are providing fundamental insight into the dynamics of the allosteric NNRTI binding site which is useful for the design of future inhibitors. Overall, work of this type is hoped to contribute to the development of predictive efficacy models for individual patients, and hence towards personalized HIV treatment options

    Guiding protein-ligand docking with different experimental NMR-data

    Get PDF
    Today's scoring functions are one of the main reasons that state-of-the-art protein-ligand dockings fail in about 20 % to 40 % of the targets due to the sometimes severe approximations they make. However these approximations are necessary for performance reasons. One possibility to overcome these problems is the inclusion of additional, preferably experimental information in the docking process. Especially ligand-based NMR experiments that are far less demanding than the solution of the whole complex structure are helpful.Here we present the inclusion of three different types of NMR-data into the ChemPLP scoring function of our docking tool PLANTS. First, STD and intra-ligand trNOE spectra were used to obtain distant constraints between ligand and protein atoms. This approach proved beneficial for the docking of larger peptide ligands i. e. the epitope of MUC-1 glycoprotein to the SM3 antibody.In the second part the usefulness of INPHARMA data is shown by combinig a score, evaluating the agreement between simulated and measured INPHARMA spectra, with the PLANTS ChemPLP scoring function. First results from rescoring after local optimization of the poses and full docking experiments are shown

    Molecular dynamics simulations and docking of non-nucleoside reverse transcriptase inhibitors (NNRTIs): a possible approach to personalized HIV treatment

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Peer Reviewe

    Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes

    Get PDF
    Centrosomes associate with spindle poles; thus, the presence of two centrosomes promotes bipolar spindle assembly in normal cells. Cancer cells often contain supernumerary centrosomes, and to avoid multipolar mitosis and cell death, these are clustered into two poles by the microtubule motor protein HSET. We report the discovery of an allosteric inhibitor of HSET, CW069, which we designed using a methodology on an interface of chemistry and biology. Using this approach, we explored millions of compounds in silico and utilized convergent syntheses. Only compound CW069 showed marked activity against HSET in vitro. The inhibitor induced multipolar mitoses only in cells containing supernumerary centrosomes. CW069 therefore constitutes a valuable tool for probing HSET function and, by reducing the growth of cells containing supernumerary centrosomes, paves the way for new cancer therapeutics

    Refining a Bayesian network using a chain event graph

    Get PDF
    The search for a useful explanatory model based on a Bayesian Network (BN) now has a long and successful history. However, when the dependence structure between the variables of the problem is asymmetric then this cannot be captured by the BN. The Chain Event Graph (CEG) provides a richer class of models which incorporates these types of dependence structures as well as retaining the property that conclusions can be easily read back to the client. We demonstrate on a real health study how the CEG leads us to promising higher scoring models and further enables us to make more refined conclusions than can be made from the BN. Further we show how these graphs can express causal hypotheses about possible interventions that could be enforced

    Development and validation of an improved algorithm for overlaying flexible molecules

    Get PDF
    A program for overlaying multiple flexible molecules has been developed. Candidate overlays are generated by a novel fingerprint algorithm, scored on three objective functions (union volume, hydrogen-bond match, and hydrophobic match), and ranked by constrained Pareto ranking. A diverse subset of the best ranked solutions is chosen using an overlay-dissimilarity metric. If necessary, the solutions can be optimised. A multi-objective genetic algorithm can be used to find additional overlays with a given mapping of chemical features but different ligand conformations. The fingerprint algorithm may also be used to produce constrained overlays, in which user-specified chemical groups are forced to be superimposed. The program has been tested on several sets of ligands, for each of which the true overlay is known from protein–ligand crystal structures. Both objective and subjective success criteria indicate that good results are obtained on the majority of these sets
    corecore