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The search for a useful explanatory model based on a Bayesian Network (BN) now has
a long and successful history. However, when the dependence structure between the
variables of the problem is asymmetric then this cannot be captured by the BN. The Chain
Event Graph (CEG) provides a richer class of models which incorporates these types of
dependence structures as well as retaining the property that conclusions can be easily
read back to the client. We demonstrate on a real health study how the CEG leads us to
promising higher scoring models and further enables us to make more refined conclusions
than can be made from the BN. Further we show how these graphs can express causal
hypotheses about possible interventions that could be enforced.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

The Bayesian Network (BN) is the most widely used graphical model [7,16] which expresses the relationship between
the variables of the system in terms of conditional independence statements. Its graphical structure makes it a particularly
useful tool to feed conclusions back to the client and it has therefore been employed in many real-world applications.
However, in certain cases the BN does not provide a rich enough structure to incorporate all information obtainable from
the data set. This is the case, for example, when the conditional independence statements of the problem are asymmetric or
only certain combinations of variables affect another variable and this cannot be represented simply by the directed edges
between variables in the BN [21]. To take these features into account extensions to the BN have been proposed, mostly in
the form of tables or tree-like structures which are added to the graph, leading to the context-specific Bayesian Network
[5,21,11]. However, these methods focus primarily on efficient propagation and learning and lose the benefit of the BN’s
expressiveness for the client. An interesting related graphical model is the Recursive Probability Tree [6] which also focuses
on efficient computation of context-specific independencies.

The Chain Event Graph (CEG) is a new flexible class of graphical models which can represent asymmetric structures
directly in its topology. It is related to the Probability Decision Graph (PDG) [19,15,18] and retains the framework of a
probability tree in a more compact graph. Because of its graphical derivation it inherits many of the benefits of a BN. For
example, we can read off conditional independence statements directly from the topology of the graph [24,26], carry out
model selection on CEGs [10] and run fast propagation algorithms [27]. It also admits a causal extension [28,25]. However,
it is a more general class than either the PDG or the discrete BN. While the PDG and BN are proven to be distinct classes of
models, neither containing the other [14], the CEG contains each of these classes as a special case [24]. Therefore, it is very
straightforward to exploit and develop the technologies originally designed for the BN to this much richer class of CEGs. In
this paper we illustrate how we use the CEG to refine an initial BN model description, demonstrating how this can provide a

✩ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.

* Corresponding author.
E-mail addresses: L.M.Barclay@warwick.ac.uk (L.M. Barclay), J.L.Hutton@warwick.ac.uk (J.L. Hutton), J.Q.Smith@warwick.ac.uk (J.Q. Smith).
0888-613X/$ – see front matter © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ijar.2013.05.006

http://dx.doi.org/10.1016/j.ijar.2013.05.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:L.M.Barclay@warwick.ac.uk
mailto:J.L.Hutton@warwick.ac.uk
mailto:J.Q.Smith@warwick.ac.uk
http://dx.doi.org/10.1016/j.ijar.2013.05.006


JID:IJA AID:7619 /FLA [m3G; v 1.101; Prn:10/06/2013; 9:29] P.2 (1-10)

2 L.M. Barclay et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
more detailed but still transparent explanation of an underlying process, which seamlessly enhances an original BN analysis.
The application in this paper explores a particular study of the Christchurch Health and Development Study [1], looking at
the effect of social and family factors on children’s health in a New Zealand birth cohort [9].

We begin the paper with a description of the programme of study forming the basis of this analysis. In Section 3 we
report how an initial routine BN model search enabled us to elaborate the conclusions made in the original study. In
Sections 4 and 5 we show how we then made more detailed exploration using the CEG, discovering a much better fitting
model that – like a BN – could be read back to the client in narrative style. We also illustrate in Section 6 how the fitted
model can be given a causal interpretation which, if valid, allows us to perform various ‘what–if’ analyses under various
policy controls. In the final section we propose further extensions to the present analysis.

2. The Christchurch Health and Development Study

The Christchurch Health and Development Study (CHDS) is carried out by a research group at Otago University, led by
Professor David Fergusson. It is a cohort study which has followed up 1265 children born in mid 1977 in Christchurch, New
Zealand, for over 30 years. The CHDS has explored the children’s development from childhood to adulthood regarding their
education, behaviour and health with respect to a wide range of social, economic and family factors.

The running example used in this paper reanalyses an early subset of the CHDS discussed in [9] which studies the
first five years of the Christchurch cohort looking at the effect the family’s social background, the economic status and the
number of family life events have on the child’s health which is measured by rates of hospital admission.

Based on previous study of the data set, Fergusson et al. [9] concluded to only consider admissions due to illness and
accidents as these were the only reasons for admissions that are sensitive to social and family situation. To describe the
family’s social background the CHDS group collected information about the mother’s education and age at birth, the family’s
socioeconomic status and ethnic origin, and whether the child grew up in a single or two parent family. These variables
were then combined using factor analysis to give a single measure of the social background (see [8] for details). Similarly,
the economic status was measured as a function of the family income, possible financial difficulties and by rating the
standard of living and the quality of the accommodation of the child. Again these were simplified into a single measure
of the overall economic situation. Of particular interest in this study was whether the effect of adverse life events in the
children’s lives might be associated with an increased rate of illness. This has provoked controversy and continues to be
a subject of research [29]. Twenty events were classed as life events, based on a variation of the Holmes and Rahe Social
Readjustment Rating Scale [13], in which the mother of the child was interviewed and reported on the events that occurred.
These included the experience of moving house, the husband changing job, the death of a close friend or relative, serious
financial problems within the family, divorce, or a serious illness or accident within the family [3].

Data was collected through a variety of sources: Mothers were interviewed every year on the family life events, while
the economic situation was predominantly rated every year by an interviewer. Hospital admissions were also obtained by
interviewing the mother of every child at each year and further by asking them to keep a health diary record. The results
were additionally compared with the central records of the Christchurch Hospital.

Rates of hospital admissions were first compared for the various levels of each covariate separately using one-way anal-
ysis of variance, concluding that the more socially or economically disadvantaged the child’s background (without adjusting
for the other factors) the higher the hospital admission rate tended to be. In addition to this the probability of an admission
increased significantly with the number of family life events. For further analysis a Cox proportional hazards model estimat-
ing the risk of hospital admission over the five years was fitted. Results from [9] showed that according to this model the
family’s economic status did not influence the risk of admission significantly once adjusting for the other covariates, sug-
gesting that in this type of population financial problems were not the main reason for health problems. In contrast, family
life events and social background both appeared to have a significant impact on the admission rates, even once having
adjusted for the other covariates. In particular, the most significant association was found between the hospital admissions
rate and the number of family life events. These interesting conclusions motivated the following analysis. We demonstrate
that our graphical methods not only allow us to disentangle the association between the variables but enable us to present
our results in a transparent way.

Complete data was available to us for 890 children and so our analysis was carried out on these. To construct the four
variables of interest we aimed to follow as far as possible the methodology of Fergusson et al. [9]. However, as the variables
describing the social and economic background are discrete, predominantly with few categories, we slightly adapted the
methods of Fergusson et al. [9], who use a factor analysis. Instead we fitted a latent-class model to construct a categorical
variable for the social background and the economic situation. The predicted classes of each child were used to describe its
social and economic situation. For simplicity, we here assumed binary latent classes throughout, distinguishing between a
high or low social background and a high or low economic situation. We further made a distinction between ‘no hospital
admission’ and ‘at least one hospital admission’ since the counts for more than one admission are sparse. Similarly, we
divided the life events into the three approximately equal sized categories: ‘low’ (0–5 events over the five years), ‘average’
(6–9 events) and ‘high’ (at least 10 events). There were 169 (19%) children with at least one admission and the proportion
of admission overall ranged from 0.12 to 0.26 (Table 1).



JID:IJA AID:7619 /FLA [m3G; v 1.101; Prn:10/06/2013; 9:29] P.3 (1-10)

L.M. Barclay et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 3
Table 1
Summary statistics and proportions of admission.

Admissions No admission � 1 admission
721 169

Social background High Low
507 (0.148) 383 (0.245)

Economic situation High Low
283 (0.148) 607 (0.209)

Number of life events 0–5 events 6–9 events � 10 events
329 (0.119) 295 (0.210) 266 (0.256)

Fig. 1. DAG for the effects on hospital admission.

3. Translation into a Bayesian Network versus model selection

We began by fitting a standard BN to this application outlined in the previous section.
We let

• X1 = family social background
• X2 = family economic situation
• X3 = number of family life events
• X4 = hospital admission.

The main conclusions of Fergusson et al. [9] could then be expressed as the single conditional independence statement
X4 ⊥⊥ X2 | X1, X3 or equivalently by the DAG given in Fig. 1. Note that the conditional independence statement could be
represented by several DAGs (for example the edges X1 → X4, X3 → X4 and X2 → X3 could be reversed). However, X1 is
measured at birth and further we are predominantly interested in the effect of the other variables on the hospital admission.
Therefore, we chose the DAG that also had a plausible causal interpretation. We discuss the causal hypotheses that can be
made from this structure further at the end of the section.

Our first step was to carry out a standard model selection procedure to find the Maximum a Posteriori (MAP) BN
structure over the four variables. The network structures were scored using the Bayesian Dirichlet (BD) metric in [12]. As
recommended by [17] the prior Dirichlet distributions were given an equivalent sample size of 3, the highest number of
categories taken by a variable in the problem. For transparency, we chose a prior network such that the distribution over
all possible configurations was uniform and assumed that structures were a priori equally likely. We use Bayes Factor (BF)
scores relative to the MAP BN model throughout for the comparison of different models although other scoring methods
could have been used.

An exhaustive search using the ‘deal’ package in R [4] over all possible BNs on the four variables found the MAP model
to be the DAG given in Fig. 2(a) with the corresponding set of conditional independence statements given by: X3 ⊥⊥ X2 | X1,
X4 ⊥⊥ X1, X2 | X3 and the associated predictive Conditional Probability Table (CPT) given in Table 2.

In comparison with the network structure derived from [9] the MAP model found was more sparse: It suggests an
additional conditional independency between the economic situation and the family life events given the social background
(X3 ⊥⊥ X2 | X1) and further expresses a direct dependency only between the life events and the hospital admissions and not
between social background and admissions (X4 ⊥⊥ X1, X2 | X3). Further, the exhaustive search over all possible structures
revealed three further network structures scoring only slightly less than the MAP model, given in Fig. 2 (b)–(d). Network
structure (b) swaps the directed edge from family life events to admissions with an edge from the social background to the
admissions. Structure (c) introduces an extra edge between the economic situation and the family life events and model (d)
again exchanges the edge of model (c) from family life events to admissions for an edge between social background and
admissions. Although the closeness of scores of different competing BNs might be due to sparseness of the data set, it is
also mildly suggestive that a model that combines features of different competing BNs is the actual generating process. We
demonstrate below that this second possibility is strongly indicated.
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Fig. 2. Highest scoring BN structures.

Table 2
Conditional probability table for MAP BN.

Conditional probability vector

(P (X1 = High), P (X1 = Low)) (0.569,0.431)

(P (X2 = High|X1 = High), P (X2 = Low|X1 = High)) (0.468,0.532)

(P (X2 = High|X1 = Low)P (X2 = Low|X1 = Low)) (0.122,0.878)

(P (X3 = Low|X1 = High), P (X3 = Average|X1 = High), P (X3 = High|X1 = High)) (0.461,0.347,0.192)

(P (X3 = Low|X1 = Low), P (X3 = Average|X1 = Low), P (X3 = High|X1 = Low)) (0.248,0.311,0.441)

(P (X4 = No admission|X3 = Low), P (X4 = Admission|X3 = Low)) (0.881,0.119)

(P (X4 = No admission|X3 = Average), P (X4 = Admission|X3 = Average)) (0.789,0.211)

(P (X4 = No admission|X3 = High), P (X4 = Admission|X3 = High)) (0.744,0.256)

In these applications we are often interested in the causal effect of social background, economic situation and family life
events on hospital admissions. For example, if it were possible to intervene on the number of life events and enact a policy
ensuring that the life events on a particular unit would always lie in the ‘low’ category, then we could conclude from the BN
and its associated CPT that the consequent probability of hospital admission would be reduced to 0.119 (compare Table 2).
However, these types of interventions may also be asymmetric. We may be interested in the effect of an intervention which
gives only families from a low social background financial aid, or similarly, we would like to know the predicted probability
of an admission if we could stop children from a low social background having a high number of life events. These types of
interventions can be simply represented within a CEG, which we describe in the next two sections.

4. Refining a Bayesian Network using a Chain Event Graph

We therefore introduce a new, more flexible, class of models called the Chain Event Graphs (CEG) [24,28]. It has several
advantages over the BN: Firstly, it is an enhancement of the standard BN by allowing for asymmetries within the dependence
structure as well as capturing discrete BNs as a particular subclass. Secondly, the CEG is derived from a probability tree
retaining its paths in a more compact graph. It hence enables us to provide a plausible story of the way in which different
factors affect children’s health, sharing therefore with the BN the property of providing an evocative graphical framework
through which conclusions can be read back to the client, who in this setting would be an advisor to policy makers within
the social services.

The CEG is derived from a probability tree which is simplified into a CEG by introducing the concepts of ‘stages’ and
‘positions’. These group the vertices in the tree together according to the associated conditional probabilities on their edges.
We say that two vertices are in the same stage u, when we have a one-to-one mapping between the edges emanating from
the two vertices and their associated conditional probabilities are the same. The full set of stages is denoted by J (T ). When
two vertices are in the same stage then their associated edges are coloured such that corresponding edges have the same
colour. The resulting tree is called a staged tree. For clarity, we here use instead of colours different node shapes when two
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Fig. 3. Staged tree.

vertices are in the same stage. A finer partition of the vertices is given by the concept of positions. We say that two vertices
are in the same position w when their full subtrees and all associated probabilities are the same.

The CEG is then constructed from the staged tree where each position is represented by a single vertex, and the set of
leaf-nodes are collected in a single position, called w∞ . Hence it is a graphical model whose vertices equal the positions of
the corresponding staged tree. Its edge set is defined as follows: For each position w a single representative vertex v(w) is
chosen. Then there exists an edge from a position w to another position w ′ in the CEG for every edge in the staged tree
from v(w) to a vertex v ′ ∈ w ′ . As a stage may be made up of several positions, the stages of the tree are indicated by
adding an undirected dotted line between any two positions that are in the same stage.

We illustrate below how a discrete BN can be represented as a CEG using the MAP BN structure given in Fig. 2(a). We
can first draw a tree corresponding to our discrete BN such that parent variables appear before their children in the ordering
of the tree (Fig. 3). Note that this ordering is not necessarily unique as a set of conditional independence statements can
be represented by several BN structures. Further given a structure the ordering may only be partial, allowing certain parent
variables to be interchanged. Here, we decide on the ordering X = (X1, X2, X3, X4). Putting the social background as our
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Fig. 4. CEG derived from MAP BN structure.

first variable is an obvious choice, as it is measured only at birth and hence cannot be affected by variables measured after
birth. The admissions are put as the final variable as we are interested in the effect that the other three variables have on it.
The economic situation is placed before the life events, which suggests that the economic situation may affect the number
of life events (e.g. change of job, financial problems). However, it is also plausible that the life events affect the economic
situation. We will discuss later the effect of switching the economic situation and the life events in the probability tree.

The conditional independence statements of a faithful BN can then be uniquely represented by defining stages on the
tree. For a detailed proof that every discrete BN can be written as a CEG see [24] (Section 3.2, p. 56). Note that a conditional
independency in the BN is of the form

Xi ⊥⊥ {X1, . . . , Xi−1}\pa(Xi) | pa(Xi),

where pa(Xi) is the parent set of Xi . To represent this in terms of stages in the tree we put all the vertices describing Xi

into the same stage whose previous events only differ in {X1, . . . , Xi−1}\pa(Xi). For example, the statement X3 ⊥⊥ X2 | X1
puts v3 into a stage with v4 and v5 into a stage with v6 (see Fig. 3). We hence have a one-to-one correspondence between
the stages of the tree and the parent configurations pa(xi), i = 2,3,4, of the BN. Also, note that consequently a BN with
no conditional independencies corresponds to a CEG where each node is in a separate stage. For our example we have the
corresponding staged tree given in Fig. 3 with stages:

u0 = {v0}, u1 = {v1}, u2 = {v2}, u3 = {v3, v4}, u4 = {v5, v6},
u5 = {v7, v10, v13, v16}, u6 = {v8, v11, v14, v17}, u7 = {v9, v12, v15, v18}.

We have that the conditional independence statement X3 ⊥⊥ X2 | X1 is described by u3 and u4 and the conditional
independence statement X4 ⊥⊥ X1, X2 | X3 by u5, u6 and u7.

From the staged tree we can then simply construct the CEG. In our example the stages and positions coincide, and hence
the vertices of the CEG are

w0 = {v0}, w1 = {v1}, w2 = {v2}, w3 = {v3, v4}, w4 = {v5, v6}, w5 = {v7, v10, v13, v16},
w6 = {v8, v11, v14, v17}, w7 = {v9, v12, v15, v18}, w∞ = {v19, . . . , v42},

with the corresponding graph given in Fig. 4.
In general, to move from a BN to a CEG we can go through each of the conditional independence statements Xi ⊥

⊥ {X1, . . . , Xi−1}\pa(Xi) | pa(Xi) for i = 2,3, . . . determining at each step the vertices describing Xi and colouring them
accordingly to display the different stages.

It can be seen from Fig. 4 that the CEG of a BN is very symmetric. The CEG, however, contains a much richer set of
conditional independence statements which can be read from the graph, although these often entail conditional indepen-
dence statements about functions of subvectors of the original problem. For example, in circumstances like those described
in the paper, we define a cut as a collection of positions where each unit passes through exactly one of the positions in the
cut. Let Z denote a random variable denoting which of the positions of a cut a unit passes through. Then, given Z , what
happens to the unit before arriving at the cut is independent of what happens after the unit leaves the cut. Thus, in our
example, the cut U = (w3, w4) is described by Z = X1 and hence we can deduce by the above that X3 ⊥⊥ X2 | X1. A more
detailed description of this is given by Smith and Anderson [24]. Reading all types of entailed conditional independence
statements associated with a CEG is straightforward but rather technical and the interested reader is referred to Ref. [26].
The increased generality of the CEG, however, allows us to search a much larger space of graphically explanatory models
to find higher scoring models with less symmetry. We note that the loss of symmetry does not make the resulting fitted
model any less interpretable, as will be illustrated in the next section.
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5. Scoring Bayesian Networks and Chain Event Graphs

When searching the CEG space we can find the most probable BN derived previously, as the BN is a subclass of CEGs.
However, if we consider the BN structures in Fig. 2 as well as the deductions we made by Fergusson et al. [9], it seems
likely that the CEG will combine certain vertices into stages and positions in an asymmetric way resulting in a better model
score. For example, it may be that a child from a lower social background and a low number of life events has the same
probability of admissions as a child from a family with a higher social background and an average number of life events.

To score all possible CEGs we set up a scoring method for CEGs corresponding directly to the BD-metric for BNs devel-
oped in [12] to allow for a direct comparison between BNs and CEGs. Freeman and Smith [10] show that the axioms in
[12] required for the BD-metric and the set up of the hyperparameters of the priors in the BN can be extended in a natural
way to the CEG. They prove that under the assumptions that the stage priors are a priori independent and are identical for
equivalent stages in different CEG structures, Dirichlet priors on the conditional probability vectors of the staged tree are
inevitable. Further priors across models can then be deduced by summing the hyperparameters of the Dirichlet distribution
when two stages are merged.

The BD-metric for CEGs is then the posterior probability of a CEG structure C given a complete multinomial sample D
which is given explicitly as

P (C |D) = P (C)

P (D)
P (D|C) = P (C)

P (D)

∏

u∈ J (T )

Γ (αu)

Γ (αu + Nu)

ru∏

k=1

Γ (αuk + Nuk)

Γ (αuk)
, (1)

with αu = ∑
k αuk and Nu = ∑

k Nuk , where αuk are the parameters of the Dirichlet distribution describing the probability
of going from a vertex in stage u to a vertex k and, similarly, Nuk,k = 1, . . . , ru , is the number of times we observe an
individual going from a vertex in stage u to a vertex k. Γ (.) is the usual Gamma function.

As for the BN, a uniform prior was given to the root-to-leaf paths of the finest partition of the CEG, in which all non-leaf
vertices are in a separate stage. To enable a direct comparison the equivalent sample size was also chosen to be 3, as for the
BNs. Assuming that different CEG structures are a priori equally likely, we can score and compare CEGs by looking simply
at their marginal likelihoods P (D|C). Similarly, we can hence look at the Bayes Factor scores (the ratio of the marginal
likelihood) between BNs and CEGs to compare the model fit. We note that some care is needed when the priors are not
chosen to be equally likely as the class of CEGs is larger than the class of BNs.

Since the CEG model space is far larger than the space of BN structures it is not feasible to perform an exhaustive
search in all but the simplest case. In our example we therefore implemented a Bayesian Agglomerate Clustering (AHC)
Algorithm developed for CEGs in [10]. The algorithm starts at the finest partition of the CEG, where each non-leaf vertex
is in a separate stage. It then quickly searches over the model space by finding at every step the two stages, which, when
merged, provide the highest CEG score, given by the BD-metric for CEGs. The new model’s score and the corresponding CEG
structure are recorded at every step. The algorithm stops once the coarsest partition of the CEG has been reached, where
all non-leaf vertices with the same topology are in a single stage. The CEG with the highest overall score is then selected.
We note that the algorithm favours simpler models and it can be shown that, when data is sparse, the algorithm tends to
gather situations into the same stage.

The AHC algorithm found the highest scoring CEG structure to be the graph in Fig. 5. The corresponding stages are:

u0 = {v0}, u1 = {v1}, u2 = {v2}, u3 = {v3, v4, v5}, u5 = {v6},
u6 = {v7, v10}, u8 = {v8, v11, v13, v14, v16}, u9 = {v9, v12, v15, v17, v18},

where u3 is split into two positions w3 and w4 in Fig. 5.

Fig. 5. CEG found by the AHC algorithm.
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Table 3
Conditional probability table for CEG.

Stage Conditional probability vector

u0 (P (X1 = High), P (X1 = Low)) (0.569,0.431)

u1 P (X2 = High|u1) + P (X2 = Low|u1) 1
u2 (P (X2 = High|u2), P (X2 = Low|u2)) (0.122,0.878)

u3 (P (X3 = Low|u3), P (X3 = Average|u3), P (X3 = High|u3)) (0.461,0.343,0.196)

u5 (P (X3 = Low|u5), P (X3 = Average|u5), P (X3 = High|u5)) (0.220,0.312,0.468)

u6 (P (X4 = No admission|u6), P (X4 = Admission|u6)) (0.910,0.090)

u7 (P (X4 = No admission|u7), P (X4 = Admission|u7)) (0.794,0.206)

u8 (P (X4 = No admission|u8), P (X4 = Admission|u8)) (0.743,0.257)

The graph illustrates several asymmetries which allow us to draw a number of conclusions on the combined effect of
the three covariates on the hospital admissions that are not obtainable from the BN. Below we give a detailed account of
the way we can interpret the topology of the CEG.

1. The social background appears to have an effect on the economic situation as suggested by the BN (w0 → w1,

w0 → w2).
2. The economic situation seems to have no effect on the number of life events for families from a higher social back-

ground (w1 → w3). However, in a family from a lower social background the economic situation seems to affect the
number of life events that occur (w2 → w4, w2 → w5), as might be expected. We note that w1 and its emanating
edges could be removed in Fig. 5, with the edge emanating from w0 leading directly into w3.

3. Children from a family of high social background and a low number of life events, independent of the economic situa-
tion, are in a separate position and hence have a different probability of admissions to the other individuals (w3 → w6).

4. Children from socially advantaged families with an average number of life events are in the same position as children
from socially disadvantaged families with a high economic situation and a low or average number of life events, as are
children from a low economic situation with a low number of life events (w3 → w7, w4 → w7, w5 → w7).

5. All individuals with a high number of life events are in the same position irrespective of their social or economic
background. Further, an individual from a low social and economic background with only an average number of life
events is also in this position (w3 → w8, w4 → w8, w5 → w8).

When comparing this CEG structure with the MAP BN structure, we obtain a Bayes Factor of 79,698 in favour of the
CEG, providing very strong evidence that the additional flexibility of the CEG enables us to find a strongly preferable model.
Table 3 gives the vectors of predictive probabilities associated with each stage.

Of particular interest are the three final positions w6, w7 and w8 as these give an interpretation of the effect of a
combination of variables on the hospital admissions as described in points 3 to 5 above. The CEG lets us trace the different
paths the individuals can take ending up in one of these three positions. We have that the predicted probability of a
hospital admission for individuals that reach position w6 is 0.09. Further we predict an admission probability of 0.206 for
individuals that reach position w7 and 0.257 for the individuals at position w8. We note that while a high number of
life events forces the individuals into position w8 with the highest admission probability, an individual from a low social
background will never reach position w6 even when he only has a low number of life events and his economic situation is
high. The table of predictive probabilities further illustrates that a child from a low social background is more likely to also
have a low economic background. Similarly, a child from a low social and economic background has a predictive probability
of 0.461 to have a high number of life events and 0.196 for a low number of life events, while for the remaining children
these probabilities are 0.220 and 0.468, respectively. It is also interesting to compare these probabilities with the probability
vectors of the MAP BN in Table 2. Our results support the conclusions of Fergusson et al. [9], that the effect of life events
on admissions is strongest. However, the CEG further explains explicitly the way in which the social background and the
economic situation may have an additional effect on hospital admissions.

If we switched the life events and the economic situation in the ordering of the event tree we obtain a MAP CEG
structure with the same final three positions, w5, w6 and w7. More explicitly, only the way in which the events may affect
the economic situation is novel, while the overall conclusions on hospital admissions remain the same. In this situation
we would have that children from a high social background with a low or average number of life events have the same
distribution for the economic situation. Also, children from a high social background with a high number of life events or
from a low social background with a low number of life events are in one stage and, similarly, families from a low social
background with an average or high number of life events are in the same stage. This CEG only scores very slightly less
than the CEG discussed previously, with a Bayes Factor of 1.27 in favour of the previous CEG but with a Bayes Factor of
70,686 in comparison to the MAP BN.

We further note that the CEG provides a useful improvement to Generalised Linear Models. When carrying out a lo-
gistic regression on the effect of the social background, economic situation and life events on the probability of hospital
admission we would need to include all possible two-way and three-way interaction terms to be able to make inference
on the combined effect of the covariates on the outcome. Given the parameter estimates of the regression model we could
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Fig. 6. Manipulated CEG.

then calculate and compare the estimated effect of each combination of covariates given the baseline. However, this easily
becomes infeasible as the number of covariates increases. To further determine the effect of the social background on the
economic situation and the effect of social background and economic situation on life events we would need to look at two
further logistic regressions. The CEG combines all this information within the topology of its graph and shows directly which
combination of covariates have similar effects on the admission probability. In addition to this the AHC algorithm automat-
ically determines when the effects of two different combinations of covariates can be interpreted as being the same (the
vertices are in the same stage) taking into account the complexity of the model and the number of counts in each category.

6. The causal interpretation of Chain Event Graphs

We further illustrate that just as with BNs these graphs can be linked to causal hypotheses about the likely effect of
interventions which can then be tested in the future. In particular, the CEG lets us make refined causal statements about
the hospital admissions by allowing for possible interventions to be asymmetric in the sense that we can intervene at
a particular position rather than only on a variable. The simplest form of intervention forces an individual that reaches a
position w along a particular edge, w → w∗ , say, and hence the conditional probability vector at w has one entry equal to 1
and zeros everywhere else. Thwaites et al. [28] then define, analogous to Pearl [20], a Causal CEG to be a CEG which, under
the manipulation at a position w , obeys the intervention formula that P (w → w∗|w) = 1 and hence P (w → w ′|w) = 0 for
w ′ �= w∗ . All other probabilities are as in the unmanipulated tree. The manipulated CEG can be drawn by deleting all paths
emanating from w that do not go along the required edge and we can calculate the effect of the intervention directly from
the table of conditional probability vectors.

In our example, if we are prepared to read the graph causally, the effect of giving only families from a low social
background financial aid corresponds to forcing all individuals that reach w2 along the edge w2 → w4. The manipulated
CEG is given in Fig. 6.

The predicted probability of hospital admissions for families from a low social background and an average number of life
events given this intervention is improved to 0.206 as can be found in Table 3. Further we can read from the table that the
intervention reduces the predicted probability of a high number of life events in socially disadvantaged families from 0.468
to 0.196, giving an improvement in the probability of admissions mediated through the life events. We further emphasise
here the point made by Shafer [22] that causal assumptions should be inferred from tree-like structures as these naturally
respect a causal ordering and in this sense we can see directly from the graph of the CEG and the associated conditional
probability vectors at which position we may want to intervene.

7. Discussion

In this paper we have demonstrated through data on childhood hospital admissions that, whilst a BN search can be very
useful for finding good explanations and providing a graphical framework for feeding back the analysis, the CEG provides
useful refinements to an initial BN study. This is not only apparent in the significantly high Bayes Factor of the derived CEG
and the MAP BN structure but also in its expressiveness for the client.

Although the CEGs structural syntax is closely linked to PDGs it is a more general class of models due to the additional
colouring of the CEG when two positions are in the same stage. Jaeger [14] showed that PDGs and BNs are incomparable
regarding the conditional independence statements they encode and hence that the BN is not a subclass of the PDG. In
contrast to this we have demonstrated in this paper that any BN can be written as a CEG and therefore, unlike for the
PDG, the techniques designed for BNs could be easily extended to CEGs to enhance an initial BN search with a subsequent
CEG analysis. In particular, the MAP model given in Fig. 5 could not be represented as a PDG, due to the colouring of the
CEG with respect to w4 and w5, which gives additional information on the effect of the social background and economic
situation on the life events.
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There are several features of interest which could not be addressed here. In particular, the dynamic structure of the data
could be used to provide further insight. Current research is being carried out on the development of a dynamic version
of the CEG. The flexibility of the CEG of allowing the nodes of the probability tree to be combined in an asymmetric way
can be exploited even more in the dynamic setting as nodes from different time points can be merged. With respect to
health studies, such as the Christchurch Health and Development Study, these models would be very useful for describing
the development of changing health status of the children due to family factors occurring at different points in time.

A further point of interest to be addressed in the future is the development of improved model selection algorithms
to enable more efficient selection procedures. We are currently developing a dynamic programming algorithm for CEGs,
based on [23], which is able to search the CEG space for problems with up to ten variables. Parallel to this the use of
CEGs for more complex problems is being considered. The development of an ordinal CEG allows for an improved graphical
representation by listing the positions in descending order according to a variable of interest. In addition to this it is often
possible to reduce the original CEG structure by defining new variables resulting from the dependence structure of the
variables depicted in the topology of the CEG. These aspects are discussed in detail in a subsequent paper [2].

However, even when the analyses are further refined in the ways described above, the point illustrated in this paper
still appears to hold: The CEG exhibits significant advantages in the application of graphical models to population studies
like those of our example. In particular, in a large BN study, the dependence structure between a subset of variables may
not be clear and further refinements may be desirable. This can easily be obtained through a CEG analysis on a selected
subset of the variables. We would therefore encourage BN modellers to explore the potential of enhancing a BN search with
a subsequent CEG analysis either on the full model or simply on a subset of the variables of the BN.

Acknowledgements

The authors would like to thank John Horwood and the CHDS research group for providing the data set. The authors
would also like to thank the reviewers whose comments greatly enhanced the paper. One of the authors was funded by the
Engineering and Physical Sciences Research Council [grant number EP/P50578X/1].

References

[1] Christchurch health and development study, http://www.otago.ac.nz/christchurch/research/healthdevelopment/, Accessed: February 2012.
[2] L. Barclay, J. Hutton, J. Smith, Chain event graphs for informed missingness, CRiSM Research Report 12-17, 2012.
[3] A. Beautrais, D. Fergusson, F. Shannon, Life events and childhood morbidity: A prospective study, Pediatrics 70 (1982) 935–940.
[4] S. Bøttcher, C. Dethlefsen, deal: A package for learning Bayesian networks, Journal of Statistical Software 8 (2003) 1–40.
[5] C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Context-specific independence in Bayesian networks, in: Proceedings of the Twelfth Conference on

Uncertainty in Artificial Intelligence Portland, Oregon, 1996, pp. 115–123.
[6] A. Cano, M. Gómez-Olmedo, S. Moral, C.B. Pérez-Ariza, A. Salmerón, Learning recursive probability trees from probabilistic potentials, International

Journal of Approximate Reasoning 53 (9) (2012) 1367–1387.
[7] R. Cowell, A. Dawid, S. Lauritzen, D. Spiegelhalter, Probabilistic Networks and Expert Systems, Springer Verlag, 2007.
[8] D. Fergusson, M. Dimond, L. Horwood, F. Shannon, The utilisation of preschool health and education services, Social Science & Medicine 19 (1984)

1173–1180.
[9] D. Fergusson, L. Horwood, F. Shannon, Social and family factors in childhood hospital admission, Journal of Epidemiology and Community Health 40

(1986) 50.
[10] G. Freeman, J. Smith, Bayesian map model selection of chain event graphs, Journal of Multivariate Analysis 102 (2011) 1152–1165.
[11] N. Friedman, M. Goldszmidt, Learning Bayesian networks with local structure, NATO ASI Series D Behavioural and Social Sciences 89 (1998) 421–460.
[12] D. Heckerman, D. Geiger, D. Chickering, Learning Bayesian networks: The combination of knowledge and statistical data, Machine Learning 20 (1995)

197–243.
[13] T. Holmes, R. Rahe, The social readjustment rating scale, Journal of Psychosomatic Research 11 (1967) 213–218.
[14] M. Jaeger, Probabilistic decision graphs – combining verification and AI techniques for probabilistic inference, International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems 12 (2004) 19–42.
[15] M. Jaeger, J.D. Nielsen, T. Silander, Learning probabilistic decision graphs, International Journal of Approximate Reasoning 42 (2006) 84–100.
[16] K. Korb, A. Nicholson, Bayesian Artificial Intelligence, vol. 1, CRC Press, 2004.
[17] R. Neapolitan, Learning Bayesian Networks, Pearson–Prentice Hall, Upper Saddle River, NJ, 2004.
[18] J.D. Nielsen, R. Rumí, A. Salmerón, Structural-EM for learning PDG models from incomplete data, International Journal of Approximate Reasoning 51

(2010) 515–530.
[19] J.J. Oliver, Decision graphs – an extension of decision trees, in: Proceedings of the Fourth International Workshop on Artificial Intelligence and Statistics,

1993, pp. 343–350.
[20] J. Pearl, Causality: Models, Reasoning, and Inference, 2nd edition, Cambridge University Press, Cambridge, 2009.
[21] D. Poole, N. Zhang, Exploiting contextual independence in probabilistic inference, Journal of Artificial Intelligence Research 18 (2003) 263–313.
[22] G. Shafer, The Art of Causal Conjecture, The MIT Press, 1996.
[23] T. Silander, P. Myllymäki, A simple approach for finding the globally optimal Bayesian network structure, in: Proceedings of the 22nd Conference on

Artificial intelligence (UAI 2006), AUAI Press, 2006, pp. 445–452.
[24] J. Smith, P. Anderson, Conditional independence and chain event graphs, Artificial Intelligence 172 (2008) 42–68.
[25] P. Thwaites, Causal identifiability via chain event graphs, Artificial Intelligence 195 (2013) 291–315.
[26] P. Thwaites, J. Smith, Separation theorems for chain event graphs, CRiSM Research Report 11-09, 2011.
[27] P. Thwaites, J. Smith, R. Cowell, Propagation using chain event graphs, in: Proceedings of the Twenty-Fourth Conference Annual Conference on Uncer-

tainty in Artificial Intelligence (UAI-08), AUAI Press, Corvallis, Oregon, 2008, pp. 546–553.
[28] P. Thwaites, J. Smith, E. Riccomagno, Causal analysis with chain event graphs, Artificial Intelligence 174 (2010) 889–909.
[29] S. Weich, J. Patterson, R. Shaw, S. Stewart-Brown, Family relationships in childhood and common psychiatric disorders in later life: Systematic review

of prospective studies, The British Journal of Psychiatry 194 (2009) 392–398.

http://www.otago.ac.nz/christchurch/research/healthdevelopment/
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib626172636C6179636861696Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib626561757472616973313938326C696665s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib626F747463686572323030336465616Cs1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib626F7574696C69657231393936636F6E74657874s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib626F7574696C69657231393936636F6E74657874s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib63616E6F323031326C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib63616E6F323031326C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib726F626572743230303770726F626162696C6973746963s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib666572677573736F6E313938347574696C69736174696F6Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib666572677573736F6E313938347574696C69736174696F6Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib666572677573736F6E31393836736F6369616Cs1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib666572677573736F6E31393836736F6369616Cs1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib667265656D616E32303131626179657369616Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib66726965646D616E313939386C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6865636B65726D616E313939356C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6865636B65726D616E313939356C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib686F6C6D657331393637736F6369616Cs1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib4A6165676572303470726F626162696C69737469636465636973696F6Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib4A6165676572303470726F626162696C69737469636465636973696F6Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6A6165676572323030366C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6B6F726232303034626179657369616Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6E6561706F6C6974616E323030346C6561726E696E67s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6E69656C73656E323031307374727563747572616Cs1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6E69656C73656E323031307374727563747572616Cs1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6F6C69766572313939336465636973696F6Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib6F6C69766572313939336465636973696F6Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib706561726C3230303963617573616C697479s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib706F6F6C65323030336578706C6F6974696E67s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib73686166657231393936617274s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib73696C616E6465723230313273696D706C65s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib73696C616E6465723230313273696D706C65s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib736D69746832303038636F6E646974696F6E616Cs1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib74687761697465733132s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib74687761697465733230313173657061726174696F6Es1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib54687761697465733038s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib54687761697465733038s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib74687761697465733230313063617573616Cs1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib77656963683230303966616D696C79s1
http://refhub.elsevier.com/S0888-613X(13)00118-7/bib77656963683230303966616D696C79s1

	Reﬁning a Bayesian Network using a Chain Event Graph
	1 Introduction
	2 The Christchurch Health and Development Study
	3 Translation into a Bayesian Network versus model selection
	4 Reﬁning a Bayesian Network using a Chain Event Graph
	5 Scoring Bayesian Networks and Chain Event Graphs
	6 The causal interpretation of Chain Event Graphs
	7 Discussion
	Acknowledgements
	References


