126 research outputs found

    Analysis of the Magnetic Properties of Nitrogenase FeMo Cofactor by Single-Crystal EPR Spectroscopy

    Get PDF
    The catalytic center of nitrogenase, the [Mo:7Fe:9S:C]:homocitrate FeMo cofactor, is a S=3/2 system with a rhombic magnetic g tensor. Single-crystal EPR spectroscopy in combination with X-ray diffraction were used to determine the relative orientation of the g tensor with respect to the cluster structure. The protein environment influences the electronic structure of the FeMo cofactor, dictating preferred orientations of possible functional relevance

    High Resolution Crystal Structures of the Wild Type and Cys-55 right-arrow Ser and Cys-59 right-arrow Ser Variants of the Thioredoxin-like [2Fe-2S] Ferredoxin from Aquifex aeolicus

    Get PDF
    The [2Fe-2S] ferredoxin (Fd4) from Aquifex aeolicus adopts a thioredoxin-like polypeptide fold that is distinct from other [2Fe-2S] ferredoxins. Crystal structures of the Cys-55 right-arrow Ser (C55S) and Cys-59 right-arrow Ser (C59S) variants of this protein have been determined to 1.25 Ã… and 1.05 Ã… resolution, respectively, whereas the resolution of the wild type (WT) has been extended to 1.5 Ã…. The improved WT structure provides a detailed description of the [2Fe-2S] cluster, including two features that have not been noted previously in any [2Fe-2S] cluster-containing protein, namely, pronounced distortions in the cysteine coordination to the cluster and a Calpha -H-Sgamma hydrogen bond between cluster ligands Cys-55 and Cys-9. These features may contribute to the unusual electronic and magnetic properties of the [2Fe-2S] clusters in WT and variants of this ferredoxin. The structures of the two variants of Fd4, in which single cysteine ligands to the [2Fe-2S] cluster are replaced by serine, establish the metric details of serine-ligated Fe-S active sites with unprecedented accuracy. Both the cluster and its surrounding protein matrix change in subtle ways to accommodate this ligand substitution, particularly in terms of distortions of the Fe2S2 inorganic core from planarity and displacements of the polypeptide chain. These high resolution structures illustrate how the interactions between polypeptide chains and Fe-S active sites reflect combinations of flexibility and rigidity on the part of both partners; these themes are also evident in more complex systems, as exemplified by changes associated with serine ligation of the nitrogenase P cluster

    Assignment of Individual Metal Redox States in a Metalloprotein by Crystallographic Refinement at Multiple X-ray Wavelengths

    Get PDF
    A method is presented to derive anomalous scattering contributions for individual atoms within a protein crystal by collecting several sets of diffraction data at energies spread along an X-ray absorption edge of the element in question. The method has been applied to a [2Fe:2S] ferredoxin model system with localized charges in the reduced state of the iron−sulfur cluster. The analysis shows that upon reduction the electron resides at the iron atom closer to the protein surface. The technique should be sufficiently sensitive for more complex clusters with noninteger redox states and is generally applicable given that crystals are available

    Physiological function and catalytic versatility of bacterial multihaem cytochromescinvolved in nitrogen and sulfur cycling

    Get PDF
    Bacterial MCCs (multihaem cytochromes c) represent widespread respiratory electron-transfer proteins. In addition, some of them convert substrates such as nitrite, hydroxylamine, nitric oxide, hydrazine, sulfite, thiosulfate or hydrogen peroxide. In many cases, only a single function is assigned to a specific MCC in database entries despite the fact that an MCC may accept various substrates, thus making it a multifunctional catalyst that can play diverse physiological roles in bacterial respiration, detoxification and stress defence mechanisms. The present article briefly reviews the structure, function and biogenesis of selected MCCs that catalyse key reactions in the biogeochemical nitrogen and sulfur cycles

    Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor

    Get PDF
    The identity of the interstitial light atom in the center of the FeMo cofactor of nitrogenase has been enigmatic since its discovery. Atomic-resolution x-ray diffraction data and an electron spin echo envelope modulation (ESEEM) analysis now provide direct evidence that the ligand is a carbon species

    Nitrogenase MoFe-Protein at 1.16 Ã… Resolution: A Central Ligand in the FeMo-Cofactor

    Get PDF
    A high-resolution crystallographic analysis of the nitrogenase MoFe-protein reveals a previously unrecognized ligand coordinated to six iron atoms in the center of the catalytically essential FeMo-cofactor. The electron density for this ligand is masked in structures with resolutions lower than 1.55 angstroms, owing to Fourier series termination ripples from the surrounding iron and sulfur atoms in the cofactor. The central atom completes an approximate tetrahedral coordination for the six iron atoms, instead of the trigonal coordination proposed on the basis of lower resolution structures. The crystallographic refinement at 1.16 angstrom resolution is consistent with this newly detected component being a light element, most plausibly nitrogen. The presence of a nitrogen atom in the cofactor would have important implications for the mechanism of dinitrogen reduction by nitrogenase

    Identification of a spin-coupled Mo(III) in the nitrogenase iron-molybdenum cofactor

    Get PDF
    International audienceNitrogenase is a complex enzyme that catalyzes the formation of ammonia utilizing a MoFe7S9C cluster. The presence of a central carbon atom was recently revealed, finally completing the atomic level description of the active site. However, important prerequisites for understanding the mechanism - the total charge, metal oxidation states and electronic structure are unknown. Herein we present high-energy resolution fluorescence detected Mo K-edge X-ray absorption spectroscopy of nitrogenase. Comparison to FeMo model complexes of known oxidation state indicates that the Mo in the FeMo cofactor of nitrogenase is best described as Mo(III), in contrast to the universally accepted Mo(IV) assignment. The oxidation state assignment is supported by theoretical calculations, which reveal the presence of an unusual spin-coupled Mo(III) site. Although so far Mo(III) was not reported to occur in biology the suggestion raises interesting parallels with the known homogenous Mo catalysts for N-2 reduction, where a Mo(III) compound is the N-2-binding species. It also requires a reassignment of the Fe oxidation states in the cofacto

    Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement

    Get PDF
    The [Mo:7Fe:9S:C] iron-molybdenum cofactor (FeMoco) of nitrogenase is the largest known metal cluster and catalyses the 6-electron reduction of dinitrogen to ammonium in biological nitrogen fixation. Only recently its atomic structure was clarified, while its reactivity and electronic structure remain under debate. Here we show that for its resting S=3/2 state the common iron oxidation state assignments must be reconsidered. By a spatially resolved refinement of the anomalous scattering contributions of the 7 Fe atoms of FeMoco, we conclude that three irons (Fe1/3/7) are more reduced than the other four (Fe2/4/5/6). Our data are in agreement with the recently revised oxidation state assignment for the molybdenum ion, providing the first spatially resolved picture of the resting-state electron distribution within FeMoco. This might provide the long-sought experimental basis for a generally accepted theoretical description of the cluster that is in line with available spectroscopic and functional data
    • …
    corecore