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Abstract
Bacterial MCCs (multihaem cytochromes c) represent widespread respiratory electron-transfer proteins. In
addition, some of them convert substrates such as nitrite, hydroxylamine, nitric oxide, hydrazine, sulfite,
thiosulfate or hydrogen peroxide. In many cases, only a single function is assigned to a specific MCC in
database entries despite the fact that an MCC may accept various substrates, thus making it a multifunctional
catalyst that can play diverse physiological roles in bacterial respiration, detoxification and stress defence
mechanisms. The present article briefly reviews the structure, function and biogenesis of selected MCCs that
catalyse key reactions in the biogeochemical nitrogen and sulfur cycles.

Introduction
Bacterial MCCs (multihaem cytochromes c) contain at least
two (but often many more) covalently bound haem groups
that are attached to HBMs (haem c-binding motifs) (usually
CX2CH) by the enzyme CCS (cytochrome c synthase)
[1]. MCCs carry out a diverse range of functions in
bacterial energy metabolism, and, in particular, members of
this protein class are involved in reactions that contribute
significantly to global nitrogen, sulfur and iron cycling.
Prominent examples of such processes are nitrification,
respiratory ammonification of nitrate and nitrite, anammox
(anaerobic ammonium oxidation), iron(III) reduction and
conversion of sulfur compounds such as sulfite, thiosulfate
and tetrathionate. Many well-known MCCs act as redox
mediators that facilitate electron transport (either directly
or indirectly) between the membranous quinone/quinol
pool and primary dehydrogenases or terminal reductases
organized in bacterial respiratory chains. These MCC families
(for instance the NapC, NrfH, TorC, NapB, NrfB, QrcA
and OhcA classes) are not within the scope of the present
article (for reviews, see [2–4]). Also excluded are MCCs
harbouring additional cofactors, e.g. flavin, in their active
site or those MCCs that facilitate redox transformation of
extracellular substrates by providing a conduit for trans-
outer membrane electron transport in species such as
Geobacter and Shewanella (see [5] for the structure of
one such MCC). In that sense and in the context of the
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biogeochemical nitrogen and sulfur cycles, the present paper
aims to summarize properties of MCCs that convert the
important physiological substrates nitrite, hydroxylamine,
hydrazine, sulfite, thiosulfate and tetrathionate. Some of
the corresponding MCC enzymes have been structurally
characterized in the past and were found to display conserved
haem c-packing motifs, although their primary structures
are largely unrelated [6,7]. More importantly, however,
purified MCCs are frequently found to convert more than
one substrate, pointing to multiple physiological roles.
The present article aims to briefly review the current
knowledge on MCC multifunctionality. In addition, aspects
of homologous and heterologous MCC biogenesis and
overproduction systems are addressed.

Physiological functions and substrate
range of MCC enzymes
Prominent examples of multifunctional MCCs catalysing key
reactions in the biogeochemical nitrogen and sulfur cycles
are given in Table 1. Here, some of the key features of these
enzymes are summarized and the fact is stressed that one has
to distinguish between physiological enzyme function(s) in
vivo and biochemical (in vitro) properties of purified enzymes
that are mainly explored in artificial redox reaction set-ups.
The classical enzyme displaying wide substrate versatility is
NrfA (enzyme 1 in Table 1) which was initially described
as an ammonium-producing pentahaem cytochrome c nitrite
reductase catalysing the key reaction in respiratory nitrite
ammonification [33]. In most cases, NrfA contains an active-
site haem c group that is covalently bound by a unique
CX2CK HBM [6]. To date this HBM has only been found in
NrfAs and the variants that carry an additional N-terminal
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Table 1 Catalytic versatility of selected MCCs relevant to nitrogen and sulfur cycle reactions

Enzyme (number and primary Representative organisms and respective Selected
structure of HBMs) cytochrome c biogenesis system* Reaction(s) catalysed† Physiological function(s) reference(s)

1. Cytochrome c nitrite reductase NrfA (4 CX2CH;

1 CX2CK = HBM 1)

Desulfovibrio vulgaris (I/II), Escherichia coli

(I), Salmonella enterica (I), Sulfurospirillum

deleyianum (II), Wolinella succinogenes

(II)

R: nitrite→ammonium; R: hydroxylamine→ammonium;

R: nitric oxide→ammonium; R: nitric oxide→nitrous

oxide; R: nitrous oxide→dinitrogen; R: sulfite→sulfide;

R: hydrogen peroxide→water; O:

hydrazine→undefined product

Respiratory nitrite ammonification;

nitrogen compound detoxification

[8–15]

2. Octahaem cytochrome c nitrite reductase Onr

(7 CX2CH; 1 CX2CK = HBM 4; Tyr303 covalently

bonded to Cys305)‡

Thioalkalivibrio nitratireducens (I), many

Geobacter species

R: nitrite→ammonium; R: hydroxylamine→ammonium;

R: sulfite→sulfide; R: hydrogen peroxide→water

Not known, but nitrite ammonification

is unlikely

[16]

3. Cytochrome c nitrite reductase NrfA (5 CX2CH) Bdellovibrio bacteriovorus (II), Campylobacter

jejuni (II), Helicobacter hepaticus (II),

Rhodopirellula baltica (II)

R: nitrite→ammonium; R: nitric oxide→ammonium Respiratory nitrite ammonification;

nitric oxide detoxification

[17,18]

4. Octahaem tetrathionate reductase Otr

(8 CX2CH)

Shewanella oneidensis (I), many other

Shewanella and Geobacter species

R: nitrite→ammonium; R: hydroxylamine→ammonium;

R: tetrathionate→thiosulfate; O:

thiosulfate→tetrathionate

Not known [19,20]

5. Hydroxylamine oxidoreductase Hao (8 CX2CH;

tyrosine present§)
Nitrosomonas europaea (I) and many other

nitrifying bacteria

O: hydroxylamine→nitrite; O: hydrazine→dinitrogen; O:

hydroxylamine→nitric oxide; R: nitric

oxide→ammonium, hydroxylamine; R:

nitrite→ammonium

Nitrification [21–23]

6. Anammox-type hydroxylamine oxidoreductase

(8 CX2CH; tyrosine present)

Candidatus ‘Brocadia anammoxidans’ (?),

Candidatus ‘Kuenenia stuttgartiensis’ (II),

Strain KSU-1 (anammox planctomycete) (?)

O: hydroxylamine→nitric oxide, nitrous oxide; O:

hydrazine→dinitrogen; R: nitric oxide→nitrous oxide;

R: nitrite→nitrous oxide, nitric oxide

Channelling of hydroxylamine via NO

into the anammox process (?)

[24–27]

7. Hydrazine oxidoreductase Hzo (7 CX2CH;

1 CX4CH = HBM 3; tyrosine present)

Candidatus ‘Kuenenia stuttgartiensis’ (II), Strain

KSU-1 (anammox planctomycete) (?)

O: hydrazine→dinitrogen Anammox [26–28]

8. Epsilonproteobacterial Hao-type enzyme εHao

(8 CX2CH; tyrosine absent)

Caminibacter mediatlanticus (II),

Campylobacter concisus (II), Campylobacter

curvus (II), Campylobacter fetus (II), Nautilia

profundicola (II)

Not examined, but nitrite reduction and hydroxylamine

oxidation are likely (see the main text)

Assimilatory and/or dissimilatory

nitrite ammonification

[8,29]

9. Cytochrome c sulfite reductase MccA/SirA (7

CX2CH; 1 CX15/17CH = HBM 8)

S. oneidensis (I), W. succinogenes (II), other

Proteobacteria

R: sulfite→sulfide Respiratory sulfite reduction [30,31]

10. Thiosulfate dehydrogenase TsdA (2 CX2CH) Allochromatium vinosum (I), C. jejuni (II) O: thiosulfate→tetrathionate Not known [32]

*Representative organisms (in alphabetical order) were chosen according to the availability of physiological data and/or characterization of purified enzymes. Bold names indicate that a high-resolution structure

model is available; (I) and (II) denote the presence of cytochrome c biogenesis systems I and/or II (question marks indicate uncertain or unclear assignments).

†The substrate with the highest specific activity or turnover number is underlined. If more than one product was detected, the dominant product is underlined. O, oxidation; R, reduction.

‡Numbering according to primary structure of T. nitratireducens Onr.

§Denotes the presence of the tyrosine residue that covalently links enzyme monomers within a homotrimer in N. europaea Hao.
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trihaem cytochrome c domain [Onr (octahaem cytochrome
c nitrite reductase); enzyme 2 in Table 1]. Crystal structures
of classical NrfAs and of Onr clearly show that the lysine
residue of the CX2CK motif acts as the proximal haem c
iron ligand and that substrates bind at the distal face of this
active-site haem c [13,34]. The reduction potential of the
lysine-ligated haem lies within the range readily accessible
to histidine-ligated haems [35]. Consequently, it is proposed
that the proximal lysine residue facilitates catalysis by offering
greater opportunity for back-bonding to stabilize the iron–
nitrite nitrogen bond that in turn weakens the N–O bonds of
the substrate [34]. Subsequent protonation of the relatively
electron-rich nitrite oxygens will lead to an HO–N=O
adduct from which water can then be liberated in the first
steps of the catalytic cycle.

Classical NrfAs and Onr are available from different
bacterial sources and were shown to convert nitric oxide,
hydroxylamine, hydrogen peroxide or sulfite, although less
efficiently than nitrite [12,13,15,16] (Table 1). The formation
of ammonium on reduction of both nitric oxide and
hydroxylamine has led to the widely accepted proposal that
these substrates are also intermediates during the reduction
of nitrite. If this is indeed the case, then the transformation of
NO to N2O (nitrous oxide) and N2O to N2 catalysed by some
classical NrfAs will probably occur by a distinct pathway
[11]. The buried nature of the active site and the histidine–
histidine ligation of neighbouring haem groups makes a
bimolecular coupling of iron–nitrosyl species unlikely and
nitrous oxide formation may instead follow a mechanism
similar to that proposed for myoglobin [36]. The fact that
Thioalkalivibrio nitratireducens, with an abundance of Onr,
is unable to support anaerobic growth with nitrite and
actually accumulates nitrite during anaerobic growth with
nitrate suggests that the primary physiological role for this
enzyme may not be nitrite reduction [37]. This may reflect
distinct functionality of the enzyme resulting from a cross-
linked tyrosine–cysteine pair within the active site that is not
found in classical NrfAs (Table 1). Here it is also interesting
that classical NrfA and Onr proteins are known to reduce
sulfite to sulfide, a process that is isoelectronic with nitrite
reduction to ammonium, so that these enzymes can be
regarded as a connecting link between the nitrogen and
sulfur cycles [13,15,16]. It is unclear, however, whether sulfite
reduction by these enzymes plays a physiological role, even
more so as sulfite usually does not induce enzyme formation.
Overall, the observed catalytic versatility is supposed to
provide physiological advantages to bacteria in their natural
environments, and NrfA proteins have indeed been shown
to confer resistance to stress exerted by reactive, toxic and/or
mutagenic compounds such as nitric oxide, hydroxylamine
or hydrogen peroxide [9,38,39].

Homologues of the classical NrfAs exist that harbour five
CX2CH motifs, i.e. the CX2CK HBM is replaced by the
conventional CX2CH HBM (enzyme 3 in Table 1). NrfA
from Campylobacter jejuni is one such enzyme that has been
shown to have a physiological role in nitrite ammonification
as well as in nitric oxide detoxification and stress defence

[17]. Catalytically active C. jejuni NrfA has been recently
produced in Wolinella succinogenes, but it is not known
whether its active-site haem c is ligated by the HBM histidine
residue or, for example, by a lysine residue located outside the
HBM [18]. Site-directed mutagenesis in Escherichia coli nrfA
replaced the lysine codon with that for histidine within the
CX2CK HBM, resulting in a protein displaying significantly
lower in vitro nitrite-reduction rates than wild-type enzyme
[40]. Similar results were also obtained with the correspond-
ing variant of W. succinogenes NrfA [41]. Both variants were
unable to support formate-dependent nitrite reduction of
their respective host organisms. Thus, whereas the CX2CK
motif may be dispensible in terms of nitrite reductase activity,
it may clearly affect the physiological competence of the
enzyme. It remains to be established whether this is through
its compromised rate of nitrite reduction or an adverse
consequence of an altered product distribution such as the
overproduction of cytotoxic nitric oxide.

Another MCC class capable of nitrite and hydroxylamine
reduction was named octahaem tetrathionate reductase (Otr),
since the Shewanella oneidensis Otr was shown to also
interconvert tetrathionate and thiosulfate (enzyme 4 in
Table 1). Although Otr contains eight CX2CH motifs, the
crystal structure of S. oneidensis Otr showed that the active-
site haem c is actually ligated by a lysine residue that replaces
the HBM histidine residue [19]. Maximal in vitro rates of
nitrite reduction are ∼400-fold lower for this enzyme than
for Onr and the classical NrfAs, again demonstrating that
lysine co-ordination of the active-site haem is not in itself
sufficient to impart rapid nitrite-reduction rates.

The largest group of OCCs (octahaem cytochromes c) are
those present predominantly in nitrifiers and anammox bac-
teria in which they catalyse hydroxylamine and/or hydrazine
turnover [42] (enzymes 5–8 in Table 1). On the basis of
primary and tertiary structure comparisons, an evolutionary
relationship of these enzymes to the NrfA/Onr/Otr classes
described above has been postulated [42]. In fact, the crystal
structure of the Nitrosomonas europaea Hao (hydroxylamine
oxidoreductase), the enzyme that oxidizes hydroxylamine to
nitrite in bacterial nitrification, was shown to be similar
to NrfA with haems 1–5 of NrfA being superimposable on
to haems 4–8 of Hao [6]. A CX2CH HBM co-ordinates
the active-site haem and provides the proximal histidine
haem ligand. However, this haem c is unusual in that the
two typical thioether bonds are accompanied by a protein-
derived tyrosine cross-link to a haem meso carbon. It is
likely that this modulates the properties of the resulting
‘P460’ haem to favour oxidative, rather than reductive,
transformations. On the other hand, the reduction of nitrite
and nitric oxide are reported to be catalysed by N. europaea
Hao in vitro using reduced Methyl Viologen as reductant
[22,23]. Anammox bacteria contain different classes of Hao-
type enzymes and some of them also contain the active-site
tyrosine residue required for ‘P460’ formation [27] (enzymes
6 and 7 in Table 1). In vivo, such enzymes may function either
as oxidizers of hydrazine [Hzo (hydrazine oxidoreductase);
oxidizing hydrazine to dinitrogen which is in the terminal
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step of anammox chemistry] or as nitric oxide-generating
hydroxylamine oxidoreductases (nitric oxide is a substrate
for hydrazine synthase, which is also an MCC). It is currently
unknown which features have to be taken into account
to distinguish Hao and Hzo OCCs. The higher reduction
potential of the nitrite–nitric oxide redox couple compared
with the hydroxylamine–nitric oxide couple may form the
basis for selecting nitrite or nitric oxide as the product of
hydroxylamine oxidation.

Another enigmatic OCC class (here named εHao) is
found in some unusual ammonifying Epsilonproteobacteria,
the majority of which lacks an NrfA homologue [8]
(enzyme 8 in Table 1). Although clearly related to Hao-
type OCCs, the active-site tyrosine residue is absent
from εHao. It was hypothesized that this enzyme reduces
nitrite to hydroxylamine in Nautilia profundicola [29], but
might just as well perform nitrite reduction to ammonium,
thereby functionally replacing NrfA. As N. profundicola
apparently needs εHao for nitrate assimilation, the latter
possibility is conceivable, since an ammonium transporter
is encoded in the genome in contrast with a putative
facilitator of hydroxylamine import. We have recently
produced Campylobacter fetus εHao in W. succinogenes and
are currently exploring its biochemical properties in reductive
as well as in oxidative nitrogen compound conversions (M.
Kern and J. Simon, unpublished work).

In addition to NrfA, another MCC has been described
that reduces sulfite to sulfide (enzyme 9 in Table 1). This
MCC was called MccA in W. succinogenes [30,44] and SirA
in S. oneidensis [31]. In both bacteria, its physiological
function appears to be respiratory sulfite reduction, making
this enzyme functionally equivalent to sirohaem-containing
dissimilatory sulfite reductases of sulfate-reducing bacteria
and archaea ([31], and M. Kern, M.G. Klotz and J. Simon,
unpublished work). The formation of W. succinogenes MccA
was induced by the presence of sulfite as the sole electron
acceptor and the protein was shown to contain eight haem
c groups that all appear to have histidine–histidine ligation
[30]. Seven haems are bound by CX2CH HBMs, whereas the
last haem is apparently attached to both cysteine residues of
a conserved CX15CH motif (Table 1). To date, it is unclear
whether this motif constitutes the active site of the enzyme. It
is also interesting that, in contrast with the enzymes discussed
above, there is no spectroscopic evidence for a haem offering a
vacant or water-bound distal site to which the substrate may
be readily expected to bind. It is also striking that purified
W. succinogenes MccA was unable to reduce nitrite, since
most enzymes reducing sulfite to sulfide are effective nitrite
reducers [30]. Clues to the basis for this selectivity may
emerge when the activity towards potential substrates such
as nitric oxide and hydroxylamine have been tested and the
impact of nitrite on sulfite reduction rates has been assessed. If
nitrite is excluded from the active site, perhaps it is not sulfite,
but rather SO2, that is the true enzyme substrate, since SO2

will always be present in aqueous sulfite solutions. Finally,
in the context of sulfur compound conversion, another
novel MCC needs to be mentioned. The dihaem cytochrome

c thiosulfate dehydrogenase TsdA from Allochromatium
vinosum was shown to oxidize thiosulfate to tetrathionate
([32], and C. Dahl, personal communication) (enzyme 10 in
Table 1). Similar enzymes are present in a diverse range of
bacteria, including some Epsilonproteobacteria.

Clearly much further work is required to understand the
in vitro and in vivo activities of these MCCs such that
these can be confidently predicted from genome analyses. It
should also be remembered that the environment the enzymes
experience in vivo may differ in many ways from those of the
in vitro laboratory assay. For example, periplasmic MCCs in
haloalkaliphiles may well experience pH>>7 and molar salt
concentrations, and we have established that these can have
a significant impact on the catalytic properties of MCCs (R.
Doyle, S. Marritt and J.N. Butt, unpublished work).

The diversity of HBMs and the discovery of
dedicated cytochrome c synthases
Haem attachment to apo-cytochromes c in bacteria requires
a complex enzymic biogenesis system, and two distinct
systems have been described and named system I (or
Ccm system) and system II (or Ccs system) [44]. The key
enzyme that catalyses the formation of two thioether bonds
between haem b vinyl groups and the reduced cysteine
thiol groups of the HBM is a membrane-bound CCS
[also referred to as CCHL (cytochrome c haem lyase)].
However, the detailed molecular mechanisms of HBM and
haem recognition, as well as the reaction mechanism of haem
attachment by CCS, are unresolved to date. In system II,
the CCS is a complex of two membrane-bound proteins
(CcsA and CcsB) or a corresponding fusion protein (CcsBA)
which is predominantly present in Epsilonproteobacteria
[18]. System II CCSs contain conserved pairs of functionally
crucial histidine residues that have been proposed to be
involved in haem b export to the outside of the bacterial
cytoplasmic membrane where cytochrome c maturation takes
place [45,46]. The most likely candidate of the system I
cytochrome c synthase is the membrane protein CcmF. Both
CcsA and CcmF carry a tryptophan-rich signature sequence
(the WWD domain) that might play a role in haem b
binding and presentation before thioether bridge formation.
Interestingly, several enzymes described in Table 1 contain
unconventional HBMs (CX2CK, CX4CH, CX15/17CH) or
covalent modifications involving either haem c or conserved
amino acid residues located in the vicinity of the active
site of substrate conversion. In the cases of the CX2CK
and CX15CH HBMs, dedicated CCS isoenzymes have been
described to be required for the haem-attachment process
in addition to the CH2CH-recognizing CCS [30,40,41,46].
Such special CCSs derive from the cognate maturation system
and have been called NrfEFG (specific to the CX2CK motif
of E. coli NrfA), NrfI (specific to the CX2CK motif of
W. succinogenes NrfA) or CcsA1 (presumably specific to
the CX15CH motif of W. succinogenes MccA). Possibly, the
CX15CH motif of S. oneidensis SirA, an MccA homologue,

C©The Authors Journal compilation C©2011 Biochemical Society
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is handled by the NrfEFG homologues SirEFG [31]. It
therefore appears that system I- and system II-containing
organisms both developed dedicated CCS enzymes during
evolution in order to attach haem to unconventional HBMs
present in NrfA or MccA/SirA. As far as we know, these
dedicated CCSs are always based on the cytochrome c
biogenesis system that is used for handling the CX2CH HBM.
Notably, the genome sequences of several Anaeromyxobacter,
Bacteroides and Geobacter species encode between four
and six distinct CcsA homologues which might indicate
the presence of more as yet unrecognized HBMs [43].
With respect to the other covalent modifications in MCCs
described in Table 1 (i.e. tyrosine cross-links), it is unclear
whether or not the formation of these is enzymically
catalysed. In principle, such bonds may form spontaneously
during protein folding and this distinction may have an
impact on the success of MCC-overproduction systems that
we now move on to discuss.

Bacterial MCC-overproduction systems
One prerequisite for testing the substrate versatility of MCCs
is the availability of pure enzymes in sufficient amounts.
Suitable purification procedures have been described for
species belonging to various proteobacterial classes as well
as for anammox bacteria (see Table 1 for references), but
protocols are often time-consuming and rely on many
purification steps that diminish enzyme yield. In addition,
interesting and novel cytochromes c are regularly predicted
from the genomes of organisms (i) that are hard to grow in
reasonable amounts (such as nitrifiers and many fastidious
Epsilonproteobacteria), (ii) that contain a vast amount of
MCCs impairing purification of single cytochromes (for
example, many Geobacter and Shewanella species), or (iii)
that are not available in pure cultures (for instance, anammox
bacteria). Furthermore, novel MCCs can be readily deduced
from metagenomic data of environmental samples due to
their HBMs. For these reasons, efficient (heterologous) cyto-
chrome c-overproduction systems are desirable to facilitate
enzyme purification and characterization. The most wide-
spread means of cytochrome c production uses aerobically
grown Escherichia coli cells that harbour a plasmid containing
the system I-encoding ccm gene cluster [47–49]. Recently, an
alternative overproduction system was described employing
the system II bacterium W. succinogenes as host organism [50].
It remains to be seen which of these systems is most efficient,
as comparative data are lacking, but it is quite likely that the
production success for a particular MCC cannot be accurately
predicted as its maturation depends on many different
parameters that are not understood in detail. However, it has
been shown that an MCC from a system I organism can be
produced in a system II organism and vice versa [46,48,49].

Conclusions and perspectives
The current amount of genomic and metagenomic sequence
data is expected to increase rapidly in the near future. It there-

fore seems reasonable to assume that many unknown MCC
families are yet to be discovered. However, the substrate
range and physiological function(s) of these enzymes will
remain difficult to deduce from their primary structure due
to the described catalytic multifunctionality. This situation
is reminiscent of proteins of the copper-containing Amo
(ammonia mono-oxygenase)/pMMO (particulate methane
mono-oxygenase) family that are known to convert different
substrates such as ammonia, methane, ethane, butane or
hexane. Another example are molybdoenzymes that contain
a molybdo-bis(pyranopterin guanine dinucleotide) cofactor
and convert a highly diverse range of substrates, including
formate, nitrate, arsenate, selenate and polysulfide. In order
to reveal the detailed function of all of these metalloenzymes,
physiological studies of bacterial strains and mutants, as well
as biochemical, spectroscopic and crystallization experiments
using purified enzymes, are mandatory. In this context, the
direct detection of substrates and products by techniques
such as gas chromatography, HPLC and MS is recommended
rather than the much simpler colorimetric detection of
coupled turnover of substrate(s) and redox dyes. In addition,
research in this area will benefit from engineering novel
cytochrome c-production systems that may use a wide range
of organisms equipped with the required biogenesis systems.
Such systems will also allow the production of MCC variants
after site-directed mutagenesis which is very useful for the
verification of mechanistic hypotheses based on the methods
described above.
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