724 research outputs found
Long Duration Exposure Facility (LDEF) attitude measurements of the Interplanetary Dust Experiment
Analysis of the data from the Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) sun sensors has allowed a confirmation of the attitude of LDEF during its first year in orbit. Eight observations of the yaw angle at specific times were made and are tabulated in this paper. These values range from 4.3 to 12.4 deg with maximum uncertainty of plus or minus 2.0 deg and an average of 7.9 deg. No specific measurements of pitch or roll were made but the data indicates that LDEF had an average pitch down attitude of less than 0.7 deg
IDE spatio-temporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds
The purpose of the Interplanetary Dust Experiment (IDE) on the Long Duration Exposure Facility (LDEF) was to sample the cosmic dust environment and to use the spatio-temporal aspect of the experiment to distinguish between the various components of the environment: zodiacal cloud, beta meteoroids, meteor streams, interstellar dust, and orbital debris. It was found that the introduction of precise time and even rudimentary directionality as co-lateral observables in sampling the particulate environment in near-Earth space produces an enormous qualitative improvement in the information content of the impact data. The orbital debris population is extremely clumpy, being dominated by persistent clouds in which the fluxes may rise orders of magnitude above the background. The IDE data suggest a strategy to minimize the damage to sensitive spacecraft components, using the observed characteristics of cloud encounters
LDEF Interplanetary Dust Experiment (IDE) results
The Interplanetary Dust Experiment (IDE) provided high time resolution detection of microparticle impacts on the Long Duration Exposure Facility satellite. Particles, in the diameter range from 0.2 microns to several hundred microns, were detected impacting on six orthogonal surfaces of the gravity-gradient stabilized LDEF spacecraft. The total sensitive surface area was about one square meter, distributed between LDEF rows 3 (Wake or West), 6 (South), 9 (Ram or East), 12 (North), as well as the Space and Earth ends of LDEF. The time of each impact is known to an accuracy that corresponds to better than one degree in orbital longitude. Because LDEF was gravity-gradient stabilized and magnetically damped, the direction of the normal to each detector panel is precisely known for each impact. The 11 1/2 month tape-recorded data set represents the most extensive record gathered of the number, orbital location, and incidence direction for microparticle impacts in low Earth orbit. Perhaps the most striking result from IDE was the discovery that microparticle impacts, especially on the Ram, South, and North surfaces, were highly episodic. Most such impacts occurred in localized regions of the orbit for dozens or even hundreds of orbits in what we have termed Multiple Orbit Event Sequences (MOES). In addition, more than a dozen intense and short-lived 'spikes' were seen in which impact fluxes exceeded the background by several orders of magnitude. These events were distributed in a highly non-uniform fashion in time and terrestrial longitude and latitude
The relationship between blood flow impairment and oxygen depletion in acute ischemic stroke imaged with magnetic resonance imaging
Oxygenation-sensitive spin relaxation time T2' and relaxation rate R2' (1/T2') are presumed to be markers of the cerebral oxygen extraction fraction (OEF) in acute ischemic stroke. In this study we investigate the relationship of T2'/R2' with dynamic susceptibility contrast-based relative cerebral blood flow (rCBF) in acute ischemic stroke to assess their plausibility as surrogate markers of ischemic penumbra. Twenty-one consecutive patients with internal carotid artery and/or middle cerebral artery occlusion were studied at 3.0 T. A physiological model of the cerebral vasculature (VM) was used to process PWI raw data in addition to a conventional deconvolution technique. T2', R2' and rCBF values were extracted from the ischemic core and hypoperfused areas. Within hypoperfused tissue, no correlation was found between deconvolved rCBF and T2' (r=-0.05, p=0.788), or R2' (r=0.039, p=0.836). In contrast, we found a strong positive correlation with T2' (r=0.444, p=0.006) and negative correlation with R2' (r=-0.494, p=0.0025) for rCBFVM, indicating increasing OEF with decreasing CBF and that rCBF based on the vascular model may be more closely related to metabolic disturbances. Further research to refine and validate these techniques may enable their use as MRI-based surrogate markers of the ischemic penumbra for selecting stroke patients for interventional treatment strategies
High-fidelity quantum driving
The ability to accurately control a quantum system is a fundamental
requirement in many areas of modern science such as quantum information
processing and the coherent manipulation of molecular systems. It is usually
necessary to realize these quantum manipulations in the shortest possible time
in order to minimize decoherence, and with a large stability against
fluctuations of the control parameters. While optimizing a protocol for speed
leads to a natural lower bound in the form of the quantum speed limit rooted in
the Heisenberg uncertainty principle, stability against parameter variations
typically requires adiabatic following of the system. The ultimate goal in
quantum control is to prepare a desired state with 100% fidelity. Here we
experimentally implement optimal control schemes that achieve nearly perfect
fidelity for a two-level quantum system realized with Bose-Einstein condensates
in optical lattices. By suitably tailoring the time-dependence of the system's
parameters, we transform an initial quantum state into a desired final state
through a short-cut protocol reaching the maximum speed compatible with the
laws of quantum mechanics. In the opposite limit we implement the recently
proposed transitionless superadiabatic protocols, in which the system perfectly
follows the instantaneous adiabatic ground state. We demonstrate that
superadiabatic protocols are extremely robust against parameter variations,
making them useful for practical applications.Comment: 17 pages, 4 figure
Exoplanets and SETI
The discovery of exoplanets has both focused and expanded the search for
extraterrestrial intelligence. The consideration of Earth as an exoplanet, the
knowledge of the orbital parameters of individual exoplanets, and our new
understanding of the prevalence of exoplanets throughout the galaxy have all
altered the search strategies of communication SETI efforts, by inspiring new
"Schelling points" (i.e. optimal search strategies for beacons). Future efforts
to characterize individual planets photometrically and spectroscopically, with
imaging and via transit, will also allow for searches for a variety of
technosignatures on their surfaces, in their atmospheres, and in orbit around
them. In the near-term, searches for new planetary systems might even turn up
free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor
additions and modification
Multi-scale investigation of uranium attenuation by arsenic at an abandoned uranium mine, South Terras
Detailed mineralogical analysis of soils from the UK’s historical key uranium mine, South Terras, was performed to elucidate the mechanisms of uranium degradation and migration in the 86 years since abandonment. Soils were sampled from the surface (0 – 2 cm) and near-surface (25 cm) in two distinct areas of ore processing activities. Bulk soil analysis revealed the presence of high concentrations of uranium (<1690 ppm), arsenic (1830 ppm) and beryllium (~250 ppm), suggesting pedogenic weathering of the country rock and ore extraction processes to be the mechanisms of uranium ore degradation. Micro-focus XRF analysis indicated the association of uranium with arsenic, phosphate and copper; µ-XRD data confirmed the presence of the uranyl-arsenate minerals metazeunerite (Cu(UO2)2(AsO4)2·8H2O) and metatorbernite (Cu(UO2)2(PO4)2·8H2O) to be ubiquitous. Our data are consistent with the solid solution of these two uranyl-mica minerals, not previously observed at uranium-contaminated sites. Crystallites of uranyl-mica minerals were observed to coat particles of jarosite and muscovite, suggesting that the mobility of uranium from degraded ores is attenuated by co-precipitation with arsenic and phosphate, which was not previously considered at this site
- …