131 research outputs found

    Cultivation-independent methods applied to the microbial prospection of oil and gas in soil from a sedimentary basin in Brazil

    Get PDF
    The upper parts of oil field structures may leak gas which is supposed to be indirectly detected by the soil bacterial populations. Such microorganisms are capable of consuming this gas, supporting the Microbial Prospection of Oil and Gas (MPOG) methodology. The goal of the present work was to characterize microbial communities involved in short-chain alkane metabolism, namely methane, ethane and propane, in samples from a petroliferous (P) soil through clone libraries of the 16S rRNA gene of the Domains Bacteria and Archaea and the catabolic gene coding for the soluble di-iron monooxygenase (SDIMO) enzyme alpha subunit. The microbial community presented high abundance of the bacterial phylum Actinobacteria, which represented 53% of total clones, and the Crenarchaeota group I.1b from the Archaea Domain. The analysis of the catabolic genes revealed the occurrence of seven Operational Protein Families (OPF) and higher richness (Chao = 7; Ace = 7.5) and diversity (Shannon = 1.09) in P soil when compared with a non-petroliferous (Np) soil (Chao = 2; Ace = 0, Shannon = 0.44). Clones related to the ethene monooxygenase (EtnC) and methane monooxygenase (MmoX) coding genes occurred only in P soil, which also presented higher levels of methane and lower levels of ethane and propane, revealed by short-chain hydrocarbon measures. Real-time PCR results suggested that the SDIMO genes occur in very low abundance in the soil samples under study. Further investigations on SDIMOs genes in natural environments are necessary to unravel their still uncharted diversity and to provide reliable tools for the prospection of degrading populations

    The Effects of Dasatinib in Experimental Acute Respiratory Distress Syndrome Depend on Dose and Etiology

    Get PDF
    Background/Aims: Evidence suggests that tyrosine-kinase inhibitors may attenuate lung inflammation and fibrosis in experimental acute respiratory distress syndrome (ARDS). We hypothesized that dasatinib, a tyrosine-kinase inhibitor, might act differently depending on the ARDS etiology and the dose. Methods: C57/BL6 mice were divided to be pre-treated with dasatinib (1mg/kg or 10mg/kg) or vehicle (1% dimethyl-sulfoxide) by oral gavage. Thirty-minutes after pre-treatment, mice were subdivided into control (C) or ARDS groups. ARDS animals received Escherichia coli lipopolysaccharide intratracheally (ARDSp) or intraperitoneally (ARDSexp). A new dose of dasatinib or vehicle was administered at 6 and 24h. Results: Forty-eight hours after ARDS induction, dasatinib 1mg/kg yielded: improved lung morphofunction and reduced cells expressing toll-like receptor (TLR)-4 in lung, independent of ARDS etiology; reduced neutrophil and levels of interleukin (IL)-6, IL-10 and transforming growth factor (TGF)-ÎČ in ARDSp. The higher dose of dasatinib caused no changes in lung mechanics, diffuse alveolar damage, neutrophil, or cells expressing TLR4, but increased IL-6, vascular endothelial growth factor (VEGF), and cells expressing Fas receptor in lung in ARDSp. In ARDSexp, it improved lung morphofunction, increased VEGF, and reduced cells expressing TLR4. Conclusion: Dasatinib may have therapeutic potential in ARDS independent of etiology, but careful dose monitoring is required. © 2015 S. Karger AG, Basel

    Vaccines for the Leishmaniases: Proposals for a Research Agenda

    Get PDF
    The International Symposium on Leishmaniasis Vaccines, held in Olinda, Brazil, on March 9–11, 2009, congregated international experts who conduct research on vaccines against the leishmaniases. The questions that were raised during that meeting and the ensuing discussions are compiled in this report and may assist in guiding a research agenda. A group to further discussion on issues raised in this policy platform has been set up at http://groups.google.com/group/leishvaccines-l

    Use of DNA technology in forensic dentistry

    Get PDF
    The established importance of Forensic Dentistry for human identification, mainly when there is little remaining material to perform such identification (e.g., in fires, explosions, decomposing bodies or skeletonized bodies), has led dentists working with forensic investigation to become more familiar with the new molecular biology techniques. The currently available DNA tests have high reliability and are accepted as legal proofs in courts. This article presents a literature review referring to the main studies on Forensic Dentistry that involve the use of DNA for human identification, and makes an overview of the evolution of this technology in the last years, highlighting the importance of molecular biology in forensic sciences
    • 

    corecore