18,326 research outputs found

    Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A2\braket{A^2} in the Landau gauge

    Get PDF
    We consider the gluon propagator D(p2)D(p^2) at various lattice sizes and spacings in the case of pure SU(3) Yang-Mills gauge theories using the Landau gauge fixing. We discuss a class of fits in the infrared region in order to (in)validate the tree level analytical prediction in terms of the (Refined) Gribov-Zwanziger framework. It turns out that an important role is played by the presence of the widely studied dimension two gluon condensate A2\braket{A^2}. Including this effect allows to obtain an acceptable fit up to 1 \'{a} 1.5 GeV, while corroborating the Refined Gribov-Zwanziger prediction for the gluon propagator. We also discuss the infinite volume extrapolation, leading to the estimate D(0)=8.3±0.5GeV2D(0)=8.3\pm0.5\text{GeV}^{-2}. As a byproduct, we can also provide the prediction g2A23GeV2\braket{g^2 A^2}\approx 3\text{GeV}^2 obtained at the renormalization scale μ=10GeV\mu=10\text{GeV}.Comment: 17 pages, 10 figures, updated version, accepted for publication in Phs.Rev.

    Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition

    Full text link
    The Kardar-Parisi-Zhang (KPZ) class is a paradigmatic example of universality in nonequilibrium phenomena, but clear experimental evidences of asymptotic 2D-KPZ statistics are still very rare, and far less understanding stems from its short-time behavior. We tackle such issues by analyzing surface fluctuations of CdTe films deposited on polymeric substrates, based on a huge spatio-temporal surface sampling acquired through atomic force microscopy. A \textit{pseudo}-steady state (where average surface roughness and spatial correlations stay constant in time) is observed at initial times, persisting up to deposition of 104\sim 10^{4} monolayers. This state results from a fine balance between roughening and smoothening, as supported by a phenomenological growth model. KPZ statistics arises at long times, thoroughly verified by universal exponents, spatial covariance and several distributions. Recent theoretical generalizations of the Family-Vicsek scaling and the emergence of log-normal distributions during interface growth are experimentally confirmed. These results confirm that high vacuum vapor deposition of CdTe constitutes a genuine 2D-KPZ system, and expand our knowledge about possible substrate-induced short-time behaviors.Comment: 13 pages, 8 figures, 2 table

    Entanglement and Bell's inequality violation above room temperature in metal carboxylates

    Full text link
    In the present work we show that a special family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the cooper carboxylate \{Cu2_2(O2_2CH)4_4\}\{Cu(O2_2CH)2_2(2-methylpyridine)2_2\}, and we have found this to be above room temperature (Te630T_e \sim 630 K). Furthermore, the results show that the system remains maximally entangled until close to 100\sim 100 K and the Bell's inequality is violated up to nearly room temperature (290\sim 290 K)

    Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth

    Full text link
    We report on the effect of substrate temperature (T) on both local structure and long-wavelength fluctuations of polycrystalline CdTe thin films deposited on Si(001). A strong T-dependent mound evolution is observed and explained in terms of the energy barrier to inter-grain diffusion at grain boundaries, as corroborated by Monte Carlo simulations. This leads to transitions from uncorrelated growth to a crossover from random-to-correlated growth and transient anomalous scaling as T increases. Due to these finite-time effects, we were not able to determine the universality class of the system through the critical exponents. Nevertheless, we demonstrate that this can be circumvented by analyzing height, roughness and maximal height distributions, which allow us to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang (KPZ) equation in a broad range of T. More important, one finds positive (negative) velocity excess in the growth at low (high) T, indicating that it is possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure

    The mechanism for the electrooxidation of procarbazine pharmaceutical preparation in alkaline media and its mathematical description

    Full text link
    The mechanism for the electrooxidation of procarbazine in alkaline media has been proposed. The process is realized completely on the electrode surface and is adsorption-controlled. The oscillatory behavior in this case is more probable, than for neutral media and may be caused by influences of electrochemical oxidation and salt dissolution from the electrode surface

    Experimental realization of the Yang-Baxter Equation via NMR interferometry

    Get PDF
    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.Comment: 10 pages and 6 figure

    A Numerical Approach to Coulomb Gauge QCD

    Get PDF
    We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wavefunction using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wavefunctional

    From an individual approach to a Cluster strategy

    Get PDF
    Portuguese agri-food sector, as well as in Europe, is characterized by being dispersed and pulverized. Nevertheless, in Portugal, the Food and Beverage Industry (F&BI) has the highest rates in terms of turnover of the manufacturing industry - corresponding to 20% (INE - 2009). This sector is a key vector of the economy, contributing the most to the Gross Domestic Product (GDP). Due to the relative small dimension of the domestic market, and its subsequent small scale, companies are obliged to turn to international markets in order to be more competitive
    corecore