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Experimental realization of the 
Yang-Baxter Equation via NMR 
interferometry
F. Anvari Vind1,2, A. Foerster2, I. S. Oliveira1, R. S. Sarthour1, D. O. Soares-Pinto3, A. M. Souza1 
& I. Roditi1

The Yang-Baxter equation is an important tool in theoretical physics, with many applications in 
different domains that span from condensed matter to string theory. Recently, the interest on the 
equation has increased due to its connection to quantum information processing. It has been shown 
that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. 
Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became 
significant to pursue its experimental implementation. Here, we show an experimental realization 
of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) 
interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample 
which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a 
pseudo-pure state from which we are able to apply a quantum information protocol that implements 
the Yang-Baxter equation.

In recent years, the Yang-Baxter equation (YBE)1–4, an important tool in theoretical physics, has attracted much 
attention in the context of quantum information science. It has been found that the YBE is closely related to the 
generation of quantum entanglement5. Furthermore a new quantum computation model based on the notion of 
integrability was proposed, where the quantum gates are related to unitary solutions of the YBE6–8.

Formally, the YBE is expressed by,

, , , = , , ,( ) ( ) ( ) ( ) ( ) ( ), ( )R v v R v v R v v R v v R v v R v v 112 1 2 13 1 3 2 3 2 3 1 3 1 223 23 13 12

where vk, k =  1, 2, 3, are called spectral parameters, or rapidities as they may also have a kinematical interpreta-
tion, and the R-matrix acts on a product space ⊗V V9. The above equation provides a sufficient condition for 
quantum integrability and leads to a consistent and systematic method to construct integrable models.

In the quantum computing framework the R-matrix corresponds to a quantum gate7, but this operator and the 
YBE may also have several other physical interpretations. In (1 +  1)-dimensional quantum field theory/scattering 
theory the YBE means that the process of 3-particle scattering is reduced to a sequence of pairwise collisions 
which do not depend on the time ordering of the 2-body collisions10. In this case R is interpreted as the two-body 
scattering matrix (usually denoted S-matrix) and the Yang-Baxter Equation has the name of “factorization equa-
tion”. In vertex models of classical statistical physics, the Yang-Baxter Equation appears as a condition for the ver-
tex weights R which allows for the exact solution of the corresponding model3. In this context it is usually referred 
as a “star-triangle” relation, interestingly inspired in a work of 1899 by a Brooklyn engineer, Kennelly, on electric 
networks, using Kirchhoff ’s laws9. On a more recent note, there has been a considerable increase of investigation 
of these structures related to quantum integrability due to several new exact results that are playing an important 
role in the progress of our understanding of the AdS/CFT correspondence11. It is worth mentioning, in addition, 
the interest raised by the realization of integrable systems, in ultracold physics12,13.

Another useful way to write the YBE is obtained by applying a permutation operator, P, to the R-matrix, such 
that, = ⊗ → ⊗ .Ř PR V V V V: a b b a  Assuming that the R-matrix satisfies the so called difference property10,14,15 
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and by a simple transformation of the spectral parameters16, x =  eu and y =  ev, it is possible to find a multiplicative 
form for the YBE,

=( ) ( ) ( ) ( ) ( ) ( ).Ř Ř Ř Ř Ř Řx xy y y xy x12 23 12 23 12 23

The interest in this form comes from its relation to the braid group which has been recently linked to topo-
logical quantum computation6–8 and a scheme for its verification through an optical setup has been proposed17 
and achieved18.

Therefore, due to the importance of the YBE to physics and quantum information processing (QIP) and the 
increasing possibility of an experimental approach in solvable systems19, direct quantum simulations of the YBE 
ought to be investigated. It is widely accepted in QIP that the development of large scale quantum processors 
depends broadly on two basic issues: (i) the construction of systems containing a large number of qubits and (ii) 
the ability to control their quantum states, and implement correction protocols to prevent decoherence caused by 
unavoidable interactions with the environment. So far, NMR has been one of the leading techniques to demon-
strate those aspects in small systems. In fact, the development of special pulse engineering techniques has allowed 
NMR to be applied to QIP with great success, with experimental demonstrations of different quantum proto-
cols and algorithms in liquid and solid-state samples, including error-correction protocols20,21. NMR quantum 
information processors provide a good testbed for QIP tasks, such as demonstrating quantum algorithms22–25, 
fundamental physics studies such as delayed choice26,27, quantum tunneling28, quantum dynamics29 and PT sym-
metries30, and the present experiment in the Yang-Baxter equation. NMR implementations have, as well, already 
provided a certain number of observations linked in various ways to particular solvable systems21,31–38, and in a 
wider way to quantum integrable systems39.

Here we follow the route of investigating this core relation behind quantum integrable systems, which we do 
by means of an NMR interferometric experiment as a tool to directly quantum simulate the YBE. The present 
demonstration of the YBE through QIP and NMR is the first one using this technique and opens up a way to 
implement quantum entanglement with integrability.

Results
NMR implementations of quantum information processors are usually executed in an ensemble of identical and 
non-interacting molecules at room temperature, where nuclear spins are employed as qubits. To implement quan-
tum information in such systems, we need to prepare, from the thermal equilibrium state, the state:

ρ ε ε ψ ψ=
−

+ . ( )N
I1

2

This state is a mixture of the pure state ψ ψ  and the maximally mixed state I/N, where N is the dimension of 
the quantum system and ε ≈  10−5 is the thermal polarization of the system. Since the maximally mixed part does 
not produce observable signal, the overall NMR signal arises only from the pure state part ψ ψ . Therefore the 
observed signal from a NMR system in the above state (2), called a pseudo-pure state (PPS), is equivalent to that 
from a system in a pure state, except that the PPS signal strength is reduced by a factor ε.

We need to cast the YBE in a suitable form for our NMR verification. This can be done through its relation to 
braiding relations, emerging for instance from the exchange of anyons6,
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The operators σj are the braid group generators. The YBE for Ř matrices, in the so-called braid limit, where 
u =  v and = ∞u , coincides with the braid relation in Eq.  (3). This is better seen using the notation 

   = ⊗ … ⊗ ⊗ … ⊗ŘRj  acting on a product of vector spaces, Ř acts on the spaces indexed ( + )j j; 1  and 
the identities on the other spaces, in the braid limit Rj furnishes a representation of the braid group15. The 
R-matrix that we need is obtained below.

First we remind17 that one can obtain two braid operations, A and B, acting on a two-dimensional topological 
basis, such that A acts as σ1 and B as σ2, their respective matrix representation is
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here, i is the imaginary number. The braiding relation for these matrices is ABA =  BAB, in the two-dimensional 
basis.

It is possible to generalize the above relation following a Yang-Baxterization40,41 procedure in order to intro-
duce spectral parameters in a four-dimensional R-matrix that can be reduced to a two-dimensional one contain-
ing spectral parameters. It consists of writing the R-matrix as

( ) = ( ) + ( ) , ( )Ř u a u b u T 5

more explicitly, in the usual notation,
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and we are interested in the case ( ) = ( ) = ( )a u a u a u1 2 , ( ) = ( ) = ( )b u b u b u1 2  such that these scalar functions 
must be consistent with the YBE, also ≡T Tjk satisfies the so called Temperley-Lieb algebra42 relations, T T2 , 

=T T T T12 23 12 12 and =T T T T23 12 23 23. The action of ( )Ř u  on the two-dimensional basis17 leads to the definition 
of the spectral parameter dependent A(u) and B(u) by, respectively, the matrix elements of ( )Ř u12  and ( )Ř u23 .

C ons is tenc y  wit h  t he  YBE prov ides  ( ) = Γ( )a u u ,  a  nor mal izat ion  fac tor,  and  ( )=b u  
ζβ ζβ βΓ( ) ( )/( − + )u i u i u u[ 2 2 1 2 ]2 2  (where ζ =  ± 1 and β =  − i/c, c being the light speed). Then, introducing 

the transformation,
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one can write, in analogy with Eq. (4), two-dimensional matrices
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, such that the operators are written in a form which is appropriate for 
NMR operations. Then the YBE we need is,

θ θ θ θ θ θ( ) ( ) ( ) = ( ) ( ) ( ). ( )A B A B A B 91 2 3 3 2 1

The angle parameters which are the spectral parameters (or rapidities) must satisfy the following kinematical 
consistency relation

θ
θ θ
θ θ

( ) =
( + )
( − )

.
( )

tan
sin
cos 102

1 3

1 3

Thus, in the NMR implementation, the operators (8) act on the ground states and excited states of the nuclear 
spin states, 0  and 1 , respectively, which are used as qubits. In other words, one maps a two-dimensional invari-
ant space on the two-level nuclear states of our sample.

Our experiment was performed on a liquid state Iodotrifluoroethylene sample. This contains molecules with 
three qubits, which are encoded in the 19F spin-1/2 nuclei (see Fig. 1). The phase decoherence times (T2) for F1, F2 
and F3 are approximately 0.08 s, 0.09 s and 0.08 s, respectively. The first step of the experiment consists of prepar-
ing, from thermal equilibrium, the PPS (2) with ψ = 000 , which correspond to a situation where all spins are 
on its ground state, for a PPS preparation we use the Controlled-transfer gates technique43.

After the initialization in the PPS we can perform the experiment for the verification of the Yang-Baxter 
Equation, the scheme of the experiment is shown in Fig. 1. In the first step a π/2 pulse about y axis is applied on 
qubits one and three, yielding to the three-qubit state ψ = ( + ) ⊗ ⊗ ( + )0 1 0 0 11

2
1
2

. In the next 
step, the Left-Hand-Side and the Right-Hand-Side of the 2D YBE (9) are applied on qubits one and three, respec-
tively. By using Eq. (8), after some manipulation the 2D YBE can be brought to a sequence of single spin rotations, 
which is the sequence implemented in the experiment.

The qubits one and three in the output states are φ1  and φ3 , respectively (see Fig. 1). To verify the YBE we 
need to measure the overlap φ φ1 3

2, if this quantity is equal to 1, then φ φ=1 3  and the YBE is satisfied, oth-
erwise the YBE is not satisfied. To perform such verification we explore a quantum interferometric approach 
based on the Controlled-SWAP gate that can extract properties of quantum states without quantum tomogra-
phy44. In this approach (see the final step in Fig. 1) the second qubit of our system is taken as a auxiliary qubit. 
After transforming the auxiliary qubit to the state +0 1 , by a π/2 rotation about y axis, a Controlled-Swap gate 
with the second qubit as control is applied. When a measurement is performed on the auxiliary, its normalized 
complex magnetization on the plane is directly related to the overlap between the states of the swapped qubits 
σ σ φ φ〈 + 〉 = 〈ix y

2 2
1 3

2,44.
In Fig. 2 we show the results for θ1 =  − θ3, θ2 =  0 and θ3 varying from 0 to 2π, in all cases the relation in (10) is 

satisfied. The histogram displays the distribution of the normalized total magnetizations of the auxiliary qubits. 
An average magnetization is 0.998 ±  0.001, showing the validity of the 2D YBE with good agreement.

We also explore the cases where (10) is not satisfied. In Fig. 3(a) we show the results for θ2 =  θ3 =  0 and θ1 
varying from 0 to 2π, these angle parameters do not satisfy the relation in (10) except for θ1 =  0, π and 2π. In 
Fig. 3(b) we show the case where θ1 =  2θ2, θ =

π
3 2

 and when θ1 changes between 0 and 2π. In this case YBE is not 
satisfied except for θ π= , ,π π

1 3
5
3

.

Discussion
Using NMR techniques developed in the realm of quantum information processing we were able to experimen-
tally verify the YBE. In order to achieve this we map a two-dimensional invariant space, related to a topological 
basis and anyon behavior, on the two-level nuclear states of our sample. In our verification we explored a quantum 
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interferometric approach based on the Controlled-SWAP gate, a procedure that can extract properties of quan-
tum states without quantum tomography. The present two-dimensional approach to investigate the YBE by means 
of NMR opens up a way to realize the four-dimensional case, which, differently from the present case, will nec-
essarily involve Bell states, and reveal the possibility to implement quantum entanglement with integrability. The 
issue of NMR entanglement is quite interesting and has been broadly discussed in the literature20. Since the results 
of45, NMR has demonstrated in a series of experiments its capability to produce quantum correlations, including 
entangled behaviour of qubits and their importance in quantum metrology46 and quantum simulations47 have 
been investigated. The control over state creation and unitary manipulation, combined with the possibility of 

Figure 1.  Quantum circuit diagram for implementation of the YBE as in 9 and 10, where the operators A 
and B are the R-matrices, here the Yang-Baxterized braid operators acting on a two-dimensional basis. H is 
the Hadamard gate. The left hand side and right hand side of the YBE are applied on qubits 1 and 3, respectively, 
while qubit 2 is auxiliary. The YBE is satisfied when the overlap φ φ1 3

2 equals 1. F1, F2 and F3 are denoted as 
qubit 1, qubit 2 and qubit 3, respectively. The structure and parameters of the fluorine labeled Iotrifluoroethylene 
molecule are also shown. The diagonal terms in the table are the chemical shifts (in Hz) of the fluorines. The off-
diagonal terms are the coupling constants, also in Hz. The grey spheres represent carbon nuclei while the red 
one is the iodine.

Figure 2.  Total magnetization of qubit 2 for θ1 = −θ3, θ2 = 0 and θ3 varying from 0 to 2π. The histogram 
displays the distribution of the normalized total magnetizations of the auxiliary qubits. The average 
magnetization is 0.998 ±  0.001, showing the expected result for the YBE.
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extending the number of qubits38 unlocks new possibilities to the applications of NMR-QIP to the study of YBE. 
Therefore, in order to carry out the four-dimensional case in an NMR setup one needs to deal with a higher 
number of qubits. We are currently doing investigations in this direction and we believe that, as in the present 
work, the interweaving between quantum integrability and quantum information, as well as its relation with 
many-body, quantum fields and statistical physics, will unveil new and interesting patterns.

Methods
For the Yang-Baxter experiment presented in this work we have used a Varian 500 MHz Spectrometer and a 
double resonance probe-head equipped with a magnetic field gradient coil. The three spin-1/2 19F nuclei of 
Iodotrifluoroethylene (C2F3I) molecule, dissolved in deuterated acetone, were used as qubits. The experiment has 
been performed at room temperature. The nuclear spins of the fluorine interact with the static magnetic field and 
with each other via a Ising-like model. The natural Hamiltonian of our system is described by

 ∑ ∑ω π= + ⊗ + ( ),
( )≠

H I J I I H t2
11j

j z
j

j k
jk z

j
z
k

RF

where σ= /I 2z
j

z
j  and ωj being, respectively, the nuclear spin operator in z–direction and the Larmor frequency of 

the spin j (σz
j is the Pauli matrix); Jjk are the couplings. ( )H tRF  is the radio-frequency (rf) Hamiltonian employed 

to control the qubits. The physical parameters of our molecule are shown in Fig. 1.
Now we display in more detail the complexity of the sequence of unitary operations used in the experiment 

and shown in the quantum circuit in Fig. 1, where time runs from left to right. In order to prepare the initial state 
and run the protocols necessary for the experiment we have used the NMR tools that were available. They were 
the rf pulses and pulsed field gradients. The later is a gradient magnetic field applied along the z direction caus-
ing an inhomogeneity in the static magnetic field. This gradient removes the coherences leading the system to a 
mixed state. From that new coherent states can be prepared by applying rf pulses. To prepare the initial state we 
have used the Controlled-transfer gates methods43, the pulse sequence is presented in Fig. 4.

The Yang-Baxter protocol was implemented using the sequence presented in Fig. 5. For the Controlled-SWAP 
gate at the end of the quantum circuit we have used the following pulse sequence presented in Fig. 6.

To implement the operations we exploit standard Isech shaped pulses and numerically optimized GRAPE 
pulses48. The GRAPE pulses are optimized to be robust to Radio-Frequency inhomogeneities and chemical shift 
variations. For combining all operations into a single pulse sequence we have used the techniques described 

Figure 3.  (a) (On the left) Total magnetization of qubit 2 for θ2 =  θ3 =  0 and θ1 varying from 0 to 2π. The blue 
line is the theoretical prediction, the green dashed line is a simulation of the experimental data and the red 
circles are the actual experimental results. For angles that do not satisfy the consistency relation (Eq. (10)), the 
total magnetization of qubit 2 is under unity for the correct angles, the total magnetization of qubit 2 equals 1. 
(b) (On the right) Total magnetization of qubit 2 for θ1 =  2θ2, θ =

π
3 2

 and θ1 varying from 0 to 2π.

Figure 4.  Pulse sequence for the initial state preparation. The initial state was prepared using Controlled-
transfer gates methods. The boxes indicate the pulses that implement rotations applied to invidual qubits. The 
angles and phases of these rotations are indicated inside and below the boxes, respectively. Refocusing pulses are 
not shown. The free evolutions are represented by black dots connected by lines where the interaction of the two 
qubits, indicated by the dots, took place, for the time shown in the figure. The dotted red lines indicate when the 
field gradients were applied. φ1 =  98.2° and φ2 =  135.59°.
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in49,50. We built a computer program, similar to the NMR quantum compiler used in the 7 qubits NMR experi-
ments51–53. The program minimizes the effects of finite pulsewidth, off-resonance errors and unwanted coupling 
evolutions54–56.
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