1,903 research outputs found

    Reference Structure Model for Degree Alert Classification During Seasonal Hydrological Events for Humanitarian Assistence in the Brazilian Amazon

    Get PDF
    AbstractRecent events in the rivers of the Amazon region show the distinct need for concern in this region and the vulnerability of the Amazonian people in regards to these events. Organizations for humanitarian aid developed procedures in the Amazon region. But to what extent are these actions effective if little is done prior to disasters? This work seeks to develop a frame of reference for classifying alertness in cities likely to suffer from flooding and ebbing of the hydrographic network in the Amazon Basin. The objective is to serve warning to the riverside communities in the state of Amazonas, establish future provisions of supplies and to form a solid database of information concerning the needs and impacts of these events, hence creating a historical record

    Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review

    Get PDF
    Pharmaceuticals, as a contaminant of emergent concern, are being released uncontrollably into the environment potentially causing hazardous effects to aquatic ecosystems and consequently to human health. In the absence of well-established monitoring programs, one can only imagine the full extent of this problem and so there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. Carbon-based nanomaterials are the most used nanostructures in (bio)sensors construction attributed to their facile and well-characterized production methods, commercial availability, reduced cost, high chemical stability, and low toxicity. However, most importantly, their relatively good conductivity enabling appropriate electron transfer rates—as well as their high surface area yielding attachment and extraordinary loading capacity for biomolecules—have been relevant and desirable features, justifying the key role that they have been playing, and will continue to play, in electrochemical (bio)sensor development. The present review outlines the contribution of carbon nanomaterials (carbon nanotubes, graphene, fullerene, carbon nanofibers, carbon black, carbon nanopowder, biochar nanoparticles, and graphite oxide), used alone or combined with other (nano)materials, to the field of environmental (bio)sensing, and more specifically, to pharmaceutical pollutants analysis in waters and aquatic species. The main trends of this field of research are also addressed.This work was financially supported by: projects UID/QUI/50006/2019 and PTDC/ASP-PES/29547/2017 (POCI-01-0145-FEDER-029547) funded by FEDER funds through the POCI and by National Funds through FCT - Foundation for Science and Technology. This proposal was also subsidized by the Brazilian agencies CNPq (Proc. 420261/2018-4) and CAPES (Proc. 88881.140821/2017-01; Finance code 001). F.W.P. Ribeiro acknowledges funding provided by FUNCAP-BPI (Proc. BP3-0139-00301.01.00/18). Acknowledgments T.M.B.F. Oliveira thanks the UFCA’s Pro-Rectory of Research and Innovation for initiating his investigations. F.W.P. Ribeiro thanks the CNPq (proc. 406135/2018-5) and all support provided by the UFCA‘s Pro-Rectory of Research and Innovation. A.N. Correia thanks the CNPq (proc. 305136/2018-6).info:eu-repo/semantics/publishedVersio

    Sensitive bi-enzymatic biosensor based on polyphenoloxidases–gold nanoparticles–chitosan hybrid film–graphene doped carbon paste electrode for carbamates detection

    Get PDF
    A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control

    (Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools

    Get PDF
    The interaction of carbon-based nanomaterials and ionic liquids (ILs) has been thoroughly exploited for diverse electroanalytical solutions since the first report in 2003. This combination, either through covalent or non-covalent functionalization, takes advantage of the unique characteristics inherent to each material, resulting in synergistic effects that are conferred to the electrochemical (bio)sensing system. From one side, carbon nanomaterials offer miniaturization capacity with enhanced electron transfer rates at a reduced cost, whereas from the other side, ILs contribute as ecological dispersing media for the nanostructures, improving conductivity and biocompatibility. The present review focuses on the use of this interesting type of nanocomposites for the development of (bio)sensors specifically for pharmaceutical detection, with emphasis on the analytical (bio)sensing features. The literature search displayed the conjugation of more than 20 different ILs and several carbon nanomaterials (MWCNT, SWCNT, graphene, carbon nanofibers, fullerene, and carbon quantum dots, among others) that were applied for a large set (about 60) of pharmaceutical compounds. This great variability causes a straightforward comparison between sensors to be a challenging task. Undoubtedly, electrochemical sensors based on the conjugation of carbon nanomaterials with ILs can potentially be established as sustainable analytical tools and viable alternatives to more traditional methods, especially concerning in situ environmental analysisThis work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalization (POCI), and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-029547—PTDC/ASP-PES/29547/2017. This work received support by UIDB/50006/2020, UIDP/50006/ 2020 and LA/P/0008/2020 by the Fundação para a Ciência e a Tecnologia (FCT), Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through national funds. T.M.B.F. Oliveira thanks the Brazilian agencies CNPq (Proc. 420261/2018-4 and 308108/2020-5) and FUNCAP (Proc. BP4-0172-00111.01.00/20) for their financial support, and he is grateful to UFCA and CAPES (Finance code 001) for supporting his investigations. F.W.P. Ribeiro thanks all support provided by the UFCA’s Pro-Rectory of Research and Innovation and the funding provided by FUNCAP-BPI (Proc. BP4-0172-00150.01.00/20) and CNPq (Proc. 406135/2018-5). P. de Lima-Neto thanks the financial support received from CNPq projects 408626/2018-6 and 304152/2018-8 and FUNCAP project FCT-00141-00011.01.00/18. A. N. Correia thanks the financial support received from CNPq projects: 305136/2018-6 and 405596/2018-9info:eu-repo/semantics/publishedVersio

    Computational Paths -- A Weak Groupoid

    Full text link
    We use a labelled deduction system based on the concept of computational paths (sequences of rewrites) as equalities between two terms of the same type. We also define a term rewriting system that is used to make computations between these computational paths, establishing equalities between equalities. We use a labelled deduction system based on the concept of computational paths (sequences of rewrites) as our tool, to perform in algebraic topology an approach of computational paths. This makes it possible to build the fundamental groupoid of a type XX connected by paths. Then, we will establish the morphism between these groupoid structures, getting the concept of isomorphisms between types and to constitute the category of computational paths, which will be called Cpaths\mathcal{C}_{paths}. Finally, we will conclude that the weak category Cpaths\mathcal{C}_{paths} determines a weak groupid.Comment: 37 pages. arXiv admin note: substantial text overlap with arXiv:1906.0910

    Estudos sobre a paz e cultura da paz

    Get PDF
    Segundo o autor, a cultura da paz implica uma mudança quer na forma como a “alta cultura” lida com a realidade quer no tipo de abordagem que o senso comum faz às relações sociais, sendo que a ruptura com a ideologia conservadora, ou seja, com o senso comum realista só é possível graças a estas alterações. O autor realça tanto a importância que os estudos sobre a paz têm para o surgimento de um conceito amplo de paz, desenvolvido por Johan Galtung, como o facto destes estarem estrategicamente orientados para a transformação do sistema internacional. Sequentemente, conclui que a paz é uma categoria moral e cultural que só pode ser alcançada através do comportamento quotidian

    Interference with Hemozoin Formation Represents an Important Mechanism of Schistosomicidal Action of Antimalarial Quinoline Methanols

    Get PDF
    Heme is an essential molecule to most living organisms, but once in a free state it exerts toxic effects. Blood-feeding organisms evolved efficient ways to detoxify free heme derived from hemoglobin digestion. A key mechanism present in some hematophagous organisms consists of the crystallization of heme into a pigment named hemozoin. Schistosoma mansoni is one of the etiologic agents of human schistosomiasis, a parasitic disease that affects over 200 million people in tropical and subtropical areas. Hemozoin formation represents the main heme detoxification pathway in S. mansoni. Here, we report that the antimalarial quinoline methanols quinine and quinidine exert schistosomicidal effects notably due to their capacity to interfere with hemozoin formation. When quinine or quinidine were administered intraperitoneally during seven days to S. mansoni-infected mice (75 mg/kg/day), both worm and eggs burden were significantly reduced. Interestingly, hemozoin content in female worms was drastically affected after treatment with either compound. We also found that quinine caused important changes in the cellular organization of worm gastrodermis and increased expression of genes related to musculature, protein synthesis and repair mechanisms. Together, our results indicate that interference with hemozoin formation is a valid chemotherapeutic target for development of new schistosomicidal agents

    Multiplicadores do Conhecimento provendo Inclusão Digital  para Crianças da Comunidade da Taíba

    Get PDF
    Este trabalho descreve um projeto de extensão desenvolvido por  estudantes de graduação participantes de um Centro Acadêmico, provendo aulas de informática a crianças carentes de uma comunidade local, focando na inserção no mundo digital  e suas oportunidades, motivando­os nas perspectivas da tecnologia da informação.

    Optimization of the HgI2 Crystal Preparation for Application as a Radiation Semiconductor Detector

    Get PDF
    The effect of HgI2 crystal encapsulation using different polymer resins, with the intent of avoiding the oxidation of the crystal surface, was evaluated in this work. The crystal was purified and grown by the physical vapor transport (PVT) technique modified. Systematic measurements were carried out for evaluating the stoichiometry, structure orientation, surface morphology and impurity of the crystal grown. The purer region of the crystal grown was selected to be prepared as a radiation detector, applying water-based conductive ink contacts and copper wire on the crystal surfaces. After that, the crystal was encapsulated with a polymeric resin which insulates atmospheric gases, aiming to improve the stability of the HgI2 detector. Four resins were used for crystal encapslation and the performance of the detector depended on the composition of the resins used. Among the four resins studied to evaluate the influence of encapsulation on the performance of crystals, as a radiation detector, the best result of resistivity and energy spectrum was obtained for the resin #3 (50% - 100% of Methylacetate and 5% - 10% of n-butylacetate). The encapsulation of crystals with polymer resins, performed with the intent of avoiding the oxidation of the crystal surface, did not compromise the measurements and were fully capable of detecting the presence of gamma radiation. The stability of the encapsulated HgI2 crystal detector was of up to 78 hs, while the stability found for HgI2 detector no encapsulated was in order 3 ~4 hs

    H1N1pdm Influenza Infection in Hospitalized Cancer Patients: Clinical Evolution and Viral Analysis

    Get PDF
    BACKGROUND: The novel influenza A pandemic virus (H1N1pdm) caused considerable morbidity and mortality worldwide in 2009. The aim of the present study was to evaluate the clinical course, duration of viral shedding, H1N1pdm evolution and emergence of antiviral resistance in hospitalized cancer patients with severe H1N1pdm infections during the winter of 2009 in Brazil. METHODS: We performed a prospective single-center cohort study in a cancer center in Rio de Janeiro, Brazil. Hospitalized patients with cancer and a confirmed diagnosis of influenza A H1N1pdm were evaluated. The main outcome measures in this study were in-hospital mortality, duration of viral shedding, viral persistence and both functional and molecular analyses of H1N1pdm susceptibility to oseltamivir. RESULTS: A total of 44 hospitalized patients with suspected influenza-like illness were screened. A total of 24 had diagnosed H1N1pdm infections. The overall hospital mortality in our cohort was 21%. Thirteen (54%) patients required intensive care. The median age of the studied cohort was 14.5 years (3-69 years). Eighteen (75%) patients had received chemotherapy in the previous month, and 14 were neutropenic at the onset of influenza. A total of 10 patients were evaluated for their duration of viral shedding, and 5 (50%) displayed prolonged viral shedding (median 23, range=11-63 days); however, this was not associated with the emergence of a resistant H1N1pdm virus. Viral evolution was observed in sequentially collected samples. CONCLUSIONS: Prolonged influenza A H1N1pdm shedding was observed in cancer patients. However, oseltamivir resistance was not detected. Taken together, our data suggest that severely ill cancer patients may constitute a pandemic virus reservoir with major implications for viral propagation
    corecore