106 research outputs found
Phylogenetic Analysis and Karyotype Evolution in Two Species of Core Gruiformes: Aramides cajaneus and Psophia viridis.
Gruiformes is a group with phylogenetic issues. Recent studies based on mitochondrial and genomic DNA have proposed the existence of a core Gruiformes, consisting of five families: Heliornithidae, Aramidae, Gruidae, Psophiidae and Rallidae. Karyotype studies on these species are still scarce, either by conventional staining or molecular cytogenetics. Due to this, this study aimed to analyze the karyotype of two species (Aramides cajaneus and Psophia viridis) belonging to families Rallidae and Psopiidae, respectively, by comparative chromosome painting. The results show that some chromosome rearrangements in this group have different origins, such as the association of GGA5/GGA7 in A. cajaneus, as well as the fission of GGA4p and association GGA6/GGA7, which place P. viridis close to Fulica atra and Gallinula chloropus. In addition, we conclude that the common ancestor of the core Gruiformes maintained the original syntenic groups found in the putative avian ancestral karyotype
Chromosome Painting in Neotropical Long- and Short-Tailed Parrots (Aves, Psittaciformes): Phylogeny and Proposal for a Putative Ancestral Karyotype for Tribe Arini.
: Most Neotropical Psittacidae have a diploid number of 2n = 70, and a dichotomy in chromosome patterns. Long-tailed species have biarmed macrochromosomes, while short-tailed species have telo/acrocentric macrochromosomes. However, the use of chromosome painting has demonstrated that karyotype evolution in Psittacidae includes a high number of inter/intrachromosomal rearrangements. To determine the phylogeny of long- and short-tailed species, and to propose a putative ancestral karyotype for this group, we constructed homology maps of Pyrrhura frontalis (PFR) and Amazona aestiva (AAE), belonging to the long- and short-tailed groups, respectively. Chromosomes were analyzed by conventional staining and fluorescent in situ hybridization using whole chromosome paints of Gallus gallus and Leucopternis albicollis. Conventional staining showed a karyotype with 2n = 70 in both species, with biarmed macrochromosomes in PFR and telo/acrocentric chromosomes in AAE. Comparison of the results with the putative avian ancestral karyotype (PAK) showed fusions in PFR of PAK1p/PAK4q (PFR1) and PAK6/PAK7 (PFR6) with a paracentric inversion in PFR6. However, in AAE, there was only the fusion between PAK6/7 (AAE7) with a paracentric inversion. Our results indicate that PFR retained a more basal karyotype than long-tailed species previously studied, and AAE a more basal karyotype for Neotropical Psittacidae analyzed so far
Recommended from our members
Chromosomal evolution and phylogenetic considerations in cuckoos (Aves, Cuculiformes, Cuculidae).
Chromosomal evolution and phylogenetic considerations in cuckoos (Aves, Cuculiformes, Cuculidae).
The Cuckoos have a long history of difficult classification. The species of this order have been the subject of several studies based on osteology, behavior, ecology, morphology and molecular data. Despite this, the relationship between Cuculiformes and species of other orders remains controversial. In this work, two species of Cuculidae, Guira guira (Gmelin, 1788) and Piaya cayana (Linnaeus, 1766), were analyzed by means of comparative chromosome painting in order to study the chromosome evolution of this group and to undertake the first chromosome mapping of these species. Our results demonstrate high chromosomal diversity, with 2n = 76 in G. guira, with fission and fusion events involving ancestral syntenies, while P. cayana presented only fissions, which were responsible for the high diploid number of 2n = 90. Interestingly, there were no chromosomal rearrangements in common between these species. Our results, based on Giemsa staining, were compared with previous data for other cuckoos and also with taxa proposed as sister-groups of Cuculiformes (Otidiformes, Musophagiformes and Opisthocomiformes). Cytogenetic comparisons demonstrated that cuckoo species can be divided into at least three major groups. In addition, we found no evidence to place Cuculiformes close to the groups proposed previously as sister-groups
Interspecies chromosome mapping in Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes (Aves): cytogenomic insight into microchromosome organization and karyotype evolution in birds
Interchromosomal rearrangements involving microchromosomes are rare events in birds. To date, they have been found mostly in Psittaciformes, Falconiformes, and Cuculiformes, although only a few orders have been analyzed. Hence, cytogenomic studies focusing on microchromosomes in species belonging to different bird orders are essential to shed more light on the avian chromosome and karyotype evolution. Based on this, we performed a comparative chromosome mapping for chicken microchromosomes 10 to 28 using interspecies BAC-based FISH hybridization in five species, representing four Neoaves orders (Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes). Our results suggest that the ancestral microchromosomal syntenies are conserved in Pteroglossus inscriptus (Piciformes), Ramphastos tucanus tucanus (Piciformes), and Trogon surrucura surrucura (Trogoniformes). On the other hand, chromosome reorganization in Phalacrocorax brasilianus (Suliformes) and Hydropsalis torquata (Caprimulgiformes) included fusions involving both macro- and microchromosomes. Fissions in macrochromosomes were observed in P. brasilianus and H. torquata. Relevant hypothetical Neognathae and Neoaves ancestral karyotypes were reconstructed to trace these rearrangements. We found no interchromosomal rearrangement involving microchromosomes to be shared between avian orders where rearrangements were detected. Our findings suggest that convergent evolution involving microchromosomal change is a rare event in birds and may be appropriate in cytotaxonomic inferences in orders where these rearrangements occurred
Effects of Fluoride on Submandibular Glands of Mice: Changes in Oxidative Biochemistry, Proteomic Profile, and Genotoxicity
Although fluoride (F) is well-known to prevent dental caries, changes in cell processes in different tissues have been associated with its excessive exposure. Thus, this study aimed to evaluate the effects of F exposure on biochemical, proteomic, and genotoxic parameters of submandibular glands. Twenty one old rats (n = 30) were allocated into three groups: 60 days administration of drinking water containing 10 mgF/L, 50 mgF/L, or only deionized water (control). The submandibular glands were collected for oxidative biochemistry, protein expression profile, and genotoxic potential analyses. The results showed that both F concentrations increased the levels of thiobarbituric acidâreactive substances (TBARS) and reduced glutathione (GSH) and changed the proteomic profile, mainly regarding the cytoskeleton and cellular activity. Only the exposure to 50 mgF/L induced significant changes in DNA integrity. These findings reinforce the importance of continuous monitoring of F concentration in drinking water and the need for strategies to minimize F intake from other sources to obtain maximum preventive/therapeutic effects and avoid potential adverse effects
Effects of long-term fluoride exposure are associated with oxidative biochemistry impairment and global proteomic modulation, but not genotoxicity, in parotid glands of mice
Fluoride has become widely used in dentistry because of its effectiveness in caries control. However, evidence indicates that excessive intake interferes with the metabolic processes of different tissues. Thus, this study aimed to investigate the effects of long-term exposure to F on the parotid salivary gland of mice, from the analysis of oxidative, proteomic and genotoxic parameters.
The animals received deionized water containing 0, 10 or 50 mg/L of F, as sodium fluoride, for 60 days. After, parotid glands were collected for analysis of oxidative biochemistry, global proteomic profile, genotoxicity assessment and histopathological analyses.
The results revealed that exposure to fluoride interfered in the biochemical homeostasis of the parotid gland, with increased levels of thiobarbituric acid reactive species and reduced glutathione in the exposed groups; as well as promoted alteration of the glandular proteomic profile in these groups, especially in structural proteins and proteins related to oxidative stress. However, genotoxic assessment demonstrated that exposure to fluoride did not interfere with DNA integrity in these concentrations and durations of exposure. Also, it was not observed histopathological alterations in parotid gland
Microchromosome BAC-FISH Reveals Different Patterns of Genome Organization in Three Charadriiformes Species
Microchromosomes, once considered unimportant elements of the genome, represent fundamental building blocks of bird karyotypes. Shorebirds (Charadriiformes) comprise a wide variety of approximately 390 species and are considered a valuable model group for biological studies. Despite this variety, cytogenetic analysis is still very scarce in this bird order. Thus, the aim of this study was to provide insight into the Charadriiformes karyotype, with emphasis on microchromosome evolution in three species of shorebirdsâCalidris canutus, Jacana jacana, and Vanellus chilensisâcombining classical and molecular approaches. Cross-species FISH mapping applied two BAC probes for each microchromosome, GGA10â28 (except GGA16). The experiments revealed different patterns of microchromosome organization in the species investigated. Hence, while in C. canutus, we found two microchromosomes involved in chromosome fusions, they were present as single pairs in V. chilensis. We also described a new chromosome number for C. canutus (2n = 92). Hence, this study contributed to the understanding of genome organization and evolution of three shorebird species
Hybridization between subterranean tuco-tucos (Rodentia, Ctenomyidae) with contrasting phylogenetic positions
Funder: Coordenação de Aperfeiçoamento de Pessoal de NĂvel Superior (Brazilian Federal Agency for the Support and Evaluation of Graduate Education); doi: https://doi.org/10.13039/501100002322Funder: Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)Abstract: Reproductive compatibility usually decreases according to increasing genetic difference and the time of divergence between species. However, the amount of modification required to influence hybridization may vary in different species. Thus, it is extremely important to conduct studies that seek to understand what and how variables influence the reproductive isolation of species. We have explored a system involving two species of subterranean rodents that present morphological, karyotypic, and evolutionary history differences and are capable of generating hybrids. To gain insight into the karyotype organization of genus Ctenomys, we examined the chromosome evolution by classical and molecular cytogenetics of both parental species and hybrids. Furthermore, we have used different approaches to analyze the differences between the parental species and the hybrids, and determined the origin of the hybrids. The results of our work demonstrate unequivocally that some species that present extensive differences in chromosome organization, phenotype, evolutionary history, sperm morphology and genetic, which are usually associated with reproductive isolation, can generate natural hybrids. The results also demonstrate that females of both species are able to generate hybrids with males of the other species. In addition, the chromosome-specific probes prepared from Ctenomys flamarioni provide an invaluable tool for comparative cytogenetics in closely related species
Understanding the chromosomal evolution in cuckoos (Aves, Cuculiformes): a journey through unusual rearrangements
The Cuculiformes are a family of over 150 species that live in a range of habitats, such as forests, savannas, and deserts. Here, bacterial artificial chromosome (BAC) probes (75 from chicken and 14 from zebra finch macrochromosomes 1â10 +ZW and for microchromosomes 11â28 (except 16)) were used to investigate chromosome homologies between chicken and the squirrel cuckoo ( Piaya cayana). In addition, repetitive DNA probes were applied to characterize the chromosome organization and to explore the role of these sequences in the karyotype evolution of P. cayana. We also applied BAC probes for chicken chromosome 17 and Z to the guira cuckoo ( Guira guira) to test whether this species has an unusual Robertsonian translocation between a microchromosome and the Z chromosome, recently described in the smooth-billed ani ( Crotophaga ani). Our results revealed extensive chromosome reorganization with inter- and intrachromosomal rearrangements in P. cayana, including a conspicuous chromosome size and heterochromatin polymorphism on chromosome pair 20. Furthermore, we confirmed that the Z-autosome Robertsonian translocation found in C. ani is also found in G. guira, not P. cayana. These findings suggest that this translocation occurred prior to the divergence between C. ani and G. guira, but after the divergence with P. cayana
- âŠ