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Abstract: Gruiformes is a group with phylogenetic issues. Recent studies based on mitochondrial
and genomic DNA have proposed the existence of a core Gruiformes, consisting of five families:
Heliornithidae, Aramidae, Gruidae, Psophiidae and Rallidae. Karyotype studies on these species are
still scarce, either by conventional staining or molecular cytogenetics. Due to this, this study aimed
to analyze the karyotype of two species (Aramides cajaneus and Psophia viridis) belonging to families
Rallidae and Psopiidae, respectively, by comparative chromosome painting. The results show that
some chromosome rearrangements in this group have different origins, such as the association of
GGA5/GGA7 in A. cajaneus, as well as the fission of GGA4p and association GGA6/GGA7, which
place P. viridis close to Fulica atra and Gallinula chloropus. In addition, we conclude that the common
ancestor of the core Gruiformes maintained the original syntenic groups found in the putative avian
ancestral karyotype.
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1. Introduction

Despite major progress in the reconstruction of phylogeny of Aves in the last decade, the
classification of species within the order Gruiformes still represents one of the least stable among this
class [1,2]. Nowadays, the order Gruiformes contains five modern families: Heliornithidae, Aramidae,
Gruidae, Psophiidae and Rallidae, this last one greatly exceeding other Gruiformes families in species
richness (144 species), geographical range and taxonomic complexity [3,4]. In addition, some gaps on
the evolutionary history and interrelationships among Gruiformes species also remain unsolved. For
example, the taxonomy of the Rallidae family has been the subject of debate, mainly because this group
has adapted to similar environments across their geographic distribution, and consequently, they
have been subject to convergence evolution, making difficult the understanding of their evolutionary
origins [3–5]. Members of the Rallidae family inhabit a range of ecological environments, including
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freshwater and saltwater marshes, mangroves, sparsely vegetated atolls, cool-temperate woodlands,
tropical forests and grasslands [3]. Similarly, the relationship of Psophiidae, a family of birds restricted
to the Amazon basin forests, with the other five families included in the core Gruiformes is still
controversial [4].

Concerning cytotaxonomic data, the karyotypes of Gruiformes are characterized by the typical
avian formula, with diploid numbers (2n) close to 2n = 80, consisting of approximately 10 pairs of
macrochromosomes and 30 pairs of indistinguishable microchromosomes [6–8]. However, there are
species outside this standard, such as Porzana albicollis (2n = 72) [7] and Fulica atra (2n = 92) [6].

The advances in comparative chromosome mapping with the use of chromosome painting has
provided important information for inferences about phylogenetic relationships in some groups
of birds, clarifying some problems left by the analyses of molecular biology [9–14]. Furthermore,
despite the apparent karyotypical conservation among birds observed by conventional staining,
comparative chromosome painting has revealed many rearrangements, such as fusions and fissions in
several macrochromosomes; this information allowed the inference of a putative ancestral karyotype
(PAK) of birds, which is actually highly similar to the chromosomal complement of Gallus gallus,
with the exception of pair 4, which corresponds to two distinct pairs in the proposed ancestral
karyotype [9–11,15,16].

Up to now, comparative chromosome painting has been performed in only two species of
Gruiformes—the coot (Fulica atra—FAT) and common moorhen (Gallinula chloropus—GCH), both
belonging to the Rallidae family. Fulica atra (2n = 92) and Gallinula chloropus (2n = 78) share the fissions
of the ancestral chromosomes GGA5 and GGA4 [17]. Moreover, these species also share chromosome
associations between GGA4/5 and GGA6/7 [17]. However, in order to understand the dynamics of
the karyotype evolution in this group, it is necessary to analyze other species belonging to different
families of Gruiformes.

Therefore, with the aim of broadening our understanding of the events occurring during the
chromosomal evolution of Gruiformes, we carried out the comparative chromosome painting with
chicken macrochromosome paints in two species of this order: Aramides cajaneus—ACA (Gray-necked
Wood-Rail), a member of the Rallidae family and Psophia viridis—PVI (Green-winged Trumpeter),
a member of the Psophiidae family. The goal of this study was to investigate (a) whether Aramides
cajaneus shows a karyotype organization similar or different to Fulica atra and Gallinula chloropus and
(b) whether Psophia viridis has similar or different rearrangements compared to Rallidade species.
Based on the chromosome painting data for Aramides cajaneus and Psophia viridis, together with the
data from the literature for other Gruiformes species, we discuss the possible process of karyotype
evolution in Gruiformes.

2. Materials and Methods

2.1. Cell Cultures and Chromosome Preparations

Skin biopsies of Aramides cajaneus (one female) and Psophia viridis (one female) were collected at
Museu Paraense Emilio Goeldi (Belém, PA, Brazil). The experiments were carried out according to
the ethical protocols approved by an ethics committee (CEUA—Federal University of Pará) under no.
170/2013 and SISBIO 68443-1). Fibroblast cells were obtained from skin biopsies after dissociation with
collagenase IV (0.0186 g in 4 mL of DMEM (Dulbecco’s Modified Eagle’s medium, Sigma-Aldrich, MO,
USA), for 1 h at 37 ◦C, and maintained in DMEM medium (Sigma-Aldrich, MO, USA) supplemented
with antibiotics (1%) and fetal bovine serum (15%) at 37 ◦C [18]. Chromosomal preparations were
obtained after mitotic arrest by adding 100 µL colcemid (0.05 µg/mL) for 1 h, followed by suspension
and incubation with 0.075 M KCl (10 min at 37 ◦C) and fixed in Carnoy’s fixative (3 methanol:1 acetic
acid). Chromosome preparations were kept at −20 ◦C until the analyses.
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2.2. Microscopic Analyses

At least 30 metaphases with conventional staining (Giemsa 5% in phosphate buffer, pH 6.8) were
examined to determine the diploid number and chromosome morphology for each species. Images
were captured using a 100× objective, microscopy DM1000 (Leica, CO, USA) and GenASIs software
(ADS Biotec, Omaha, NE, USA) and the karyotype were ordered according to their arm ratios.

2.3. Chromosome Painting

Whole-chromosome probes of G. gallus (pairs 1–10) generated by flow-sorting (Cambridge Resource
Centre for Comparative Genomics, Cambridge, UK) were labeled either with biotin or digoxygenin
(Roche Diagnostics, Mannheim, Germany) by degenerate oligonucleotide-primed polymerase chain
reaction (DOP-PCR) [19]. After denaturing in 70 ◦C for 10 min and preannealed for 30 min at 37 ◦C,
the hybridization solution (1 µL labeled probe in 14 µL hybridization buffer) was added on slides
with chromosome preparations previously desnatured at 70% formamide for 1 min and 20 s and
dehydrated by serial ethanol dehydration (70%, 90% and 100%). Hybridization and detection by
Avidin-Cy5 or anti-digoxygenin (Vector Laboratories, Burlingame, CA, USA), proceeded according
to standard protocols [15]. Chromosomes were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI) (Sigma-Aldrich, St. Louis, MO, USA).

At least 10 metaphase spreads per individual were analyzed to confirm the hybridizations signals.
FISH results were analyzed using a Zeiss Imager 2 microscope, 63× objective and images were captured
using Axiovision v.4.8 software (Zeiss, Jena, Germany). Final edition of images was made using Adobe
Photoshop CS6 software. For chromosomal evolution inferences, we used chromosome painting data
from Fulica atra (FAT) and Gallinula chloropus (GCH) [17].

2.4. Phylogenetic Analysis

The inference of the phylogenetic tree was made based on cytogenetic information (chromosome
painting) of four Gruiformes species, three belonging to the Rallidae Family (Fulica atra, Gallinula
chloropus and Aramides cajaneus) and Psophiidae family (Psophia viridis), taking into consideration the
presence or absence of chromosome features in these species.

3. Results

3.1. Karyotypes of Aramides cajaneus and Psophia viridis

The karyotype of Aramides cajaneus has 2n = 78. Pairs 1, 2 and 4 are submetacentric, while 5, 6 and
8 are metacentric. The remaining autosomal chromosomes are telocentric (Figure 1A). The Z and W sex
chromosomes are metacentric. Psophia viridis has a karyotype comprised of 80 chromosomes. Pair 1 is
submetacentric, while pairs 2 and 5 are acrocentric, and pair 4 is metacentric and easily distinguishable
from other chromosomes. The remaining autosomal chromosomes are telocentric. Among the sex
chromosomes, Z is submetacentric and the W chromosome is telocentric (Figure 1B).

3.2. Chromosome Painting

The chicken probes corresponding to pairs GGA1–10 showed the following correspondence in
the karyotype of Aramides cajaneus (ACA): GGA1 (ACA1); GGA2 (ACA2); GGA3 (ACA3); GGA4
(ACA5 and ACA7); GGA5 (ACA4q); GGA6 (ACA6); GGA7 (ACA4p); GGA8 (ACA8); GGA9 (ACA9)
and GGA10 (ACA10). In addition, an association between GGA5/GGA7 was identified in (ACA4)
(Figure 2C,D); therefore, a total of 11 homology signals were found in the karyotype of A. cajaneus with
GGA probes (Figure 2 and Figure 4A). However, in Psophia viridis, chicken painting probes showed a
slightly different correspondence when compared to Aramides cajaneus. Hence, the homologies between
chicken and Psophia viridis (PVI) are: GGA1 (PVI1); GGA2 (PVI2); GGA3 (PVI3); GGA4 (PVI5, PVI9 and
ACA11); GGA5 (PVI6); GGA6 (PVI4q); GGA7 (PVI4p); GGA8 (PVI7); GGA9 (PVI8) and GGA10 (PVI9).
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Furthermore, a fission in GGA4 and an association between GGA6/GGA7 in (PVI4) were observe
in this species, thereby, a total of 12 homology signals were observed between the chromosomes of
P. viridis and GGA probes (Figure 3; Figure 4B).
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with the same size and morphology; for this reason, only the macrochromosomes are shown).
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Figure 2. Experiments of chromosome painting using G. gallus probes in metaphases of Aramides
cajaneus. (A,B) Examples of conserved syntenic groups (GGA1 and GGA2); (C,D) Examples of
rearranged syntenic groups, showing an association between GGA5/ GGA7 on ACA4.

3.3. Syntenic Blocks Shared among Gruiformes Species and Phylogentic Analyses

In order to proceed with the phylogenetic analysis, comparative chromosome painting data
covering the homology of macrochromosome pairs of four species of Gruiformes—Aramides cajaneus
and Psophia viridis from the present work, and Fulica atra and Gallinula chloropus previously described
by [17]—were organized in a matrix (Table 1). The phylogenetic tree obtained is shown in
Figure 5. F. atra and G. chloropus are more derived in relation to the A. cajaneus, and form a clade
supported by three rearrangements—the fusion GGA4/GGA5 and GGA6/GGA7, and also the fission of
GGA4p—chromosome features not observed in A. cajaneus. Concerning P. viridis, it would be closer to
the clade formed by F. atra and G. chloropus, with which this species shares two rearrangements: the
fission of GGA4p and the association GGA6/GGA7.



Genes 2020, 11, 307 6 of 12Genes 2019, 10 FOR PEER REVIEW  6 

 

 

 147 
Figure 3. Chromosome painting of G. gallus in Psophia viridis. The large pink fluorescence area on the 148 
top left corner of the figure (C) is a signal of regions in the nucleus that were hybridized by the probe 149 
used (GGA5). 150 

Figure 3. Representative examples of chromosome painting using macrochromosomes of G. gallus in
Psophia viridis: GGA2 (A), GGA3 (B), GGA5 (C) and GGA 9 (D). The large pink fluorescence area on
the top left corner of the (C) represent signals produced by the probes in interphase nucleus.

Table 1. Chromosomal homologies among Gruiformes species and Gallus gallus (GGA1-10).

Chicken
Chromosome
Paint Number

F. atra, FAT,
2n = 92

[17]

G. chloropus,
GCH,

2n = 78
[17]

A. cajaneus, ACA,
2n = 78

(Present Study)

P. viridis, PVI,
2n = 80

(Present Study)

GGA1 FAT1 GCH1 ACA1 PVI1

GGA2 FAT2 GCH2 ACA2 PVI2

GGA3 FAT3 GCH3 ACA3 PVI3

GGA4q FAT4p GCH4p ACA5 PVI5

GGA5 FAT4q, FAT12 GCH4q, GCH12 ACA4q PVI6

GGA6 FAT5q GCH5q ACA6 PVI4q

GGA7 FAT5p GCH5p ACA4p PVI4p

GGA8 FAT6 GCH6 ACA8 PVI7

GGA9 FAT8 GCH8 ACA9 PVI8

GGA4p FAT7, FAT13 GCH7, GCH13 ACA7 PVI9, PVI11

GGA10 FAT9 GCH9 ACA10 PVI9



Genes 2020, 11, 307 7 of 12Genes 2019, 10 FOR PEER REVIEW  7 

 

 

 151 
Figure 4. Homology maps with GGA probes in (A) Aramides cajaneus and (B) Psophia viridis. 152 

3.3. Syntenic Blocks Shared Among Gruiformes Species and Phylogentic Analyses 153 
In order to proceed with the phylogenetic analysis, comparative chromosome painting data 154 

covering the homology of macrochromosome pairs of four species of Gruiformes—Aramides cajaneus 155 
and Psophia viridis from the present work, and Fulica atra and Gallinula chloropus previously described 156 
by [17]—were organized in a matrix (Table 1). The phylogenetic tree obtained is shown in Figure 5. 157 
F. atra and G. chloropus are more derived in relation to the A. cajaneus, and form a clade supported by 158 
three rearrangements—the fusion GGA4/GGA5 and GGA6/GGA7, and also the fission of GGA4p—159 
chromosome features not observed in A. cajaneus. Concerning P. viridis, it would be closer to the clade 160 
formed by F. atra and G. chloropus, with which this species shares two rearrangements: the fission of 161 
GGA4p and the association GGA6/GGA7. 162 
  163 

Figure 4. Homology maps with GGA probes in (A) Aramides cajaneus and (B) Psophia viridis.



Genes 2020, 11, 307 8 of 12

Genes 2019, 10 FOR PEER REVIEW  10 

 

 

 224 
Figure 5. Schematic representation of chromosome rearrangements during evolution of the Gruiformes based on comparative chromosome painting and literature results 225 
(Nanda et al., 2011). We propose that the A. cajaneus would be more basal within the Rallidae family and P. viridis close to F. atra and G. chloropus. Legend: Fulica atra (FAT), 226 
Aramides cajaneus (ACA), Gallinula chloropus (GCH), Psophia viridis (PVI), Gallus gallus (GGA). 227 

Figure 5. Schematic representation of chromosome rearrangements during evolution of the Gruiformes based on comparative chromosome painting and literature
results (Nanda et al., 2011). We propose that the A. cajaneus would be more basal within the Rallidae family and P. viridis close to F. atra and G. chloropus. Legend: Fulica
atra (FAT), Aramides cajaneus (ACA), Gallinula chloropus (GCH), Psophia viridis (PVI), Gallus gallus (GGA).



Genes 2020, 11, 307 9 of 12

4. Discussion

The diploid chromosome numbers of both species analyzed are very similar, A. cajaneus 2n =

78 and P. viridis 2n = 80 (Figure 1). Additionally, both species are characterized by a typical avian
karyotype, since the mode of the chromosome number in birds is 2n = 80, with a high number of
microchromosomes [16,20].

In general, rearrangements found in Gruiformes involved chromosome pairs homologous to
GGA4, GGA5, GGA6 and GGA7. The fission of ancestral syntenies GGA4p and GGA5 followed by
fusion have been proposed as ancestral events in Gruiformes, since these rearrangements are present
in F. atra and G. chloropus [17]. However, in P. viridis, only the fission in GGA4p has been observed,
without the fusion between GGA4q/GGA5 (Figure 4A). Furthermore, A. cajaneus does not share these
rearrangements (Figure 5).

The association GGA6/GGA7 has been found in two species of family Rallidae (F. atra and
G. chloropus) [17] and family Psophiidae (P. viridis); however, it is absent in A. cajaneus (Table 1). The
association between GGA6/GGA7 has been detected in five species belonging to different orders of birds:
Galliformes—Numida meleagris [21], Strigiformes—Pulsatrix perspicillata [22], Trogoniformes—Trogon s.
surrucura [23], Psittaciformes—Nymphicus hollandicus, Agapornis roseicollis, Melopsittacus undulates [24],
Ara macao [25], Ara chloropterus, Anodorhynchus hyacinthinus [9], Psittacus erithacus [26], Pyrrhura frontalis,
Amazona aestiva [11] and Columbiformes—Leptotila verreauxi [16]. Hence, GGA6/GGA7 association
originated independently in five different orders.

The apparent multiple independent origins of associations between GGA6/GGA7 in avian species
suggest that there are specific sites in these chromosomes that are susceptible to rearrangement
processes (hotspots) [27–29]. This fact highlights the potential for the occurrence of rearrangements,
such as chromosomal fusions, inversions and centromere shifts [30].

Phylogenetic Analysis

The results obtained from the experiments in this study, together with data previously published
concerning two other Gruiformes (Table 1; Table 2), were plotted using the phylogenetic tree proposed
by [4] and [5] to improve understanding of chromosomal evolution in this order (Figure 5).

Table 2. Chromosomal rearrangements observed in Gruiformes, according to comparative chromosome
painting with G. gallus probes.

Family Species Rearrangements
(GGA) References

Associations Fission

GGA6/7 GGA5/7 GGA4
(2 pairs)

GGA4
(3 pairs) GGA5

Psophiidae Psophia viridis * * Present study
Rallidae Aramides cajaneus * * Present study
Rallidae Fulica atra * * * [17]
Rallidae Gallinula chloropus * * * [17]

The presence of the rearrangement is indicated by *.

In respect of family Rallidae, some phylogenetic relationships, such as F. atra and G. chloropus as
sister-groups, are well supported [31,32]. According to [5], A. cajaneus was included in the “Aramides
clade”, as a sister-group of “Fulica clade”. The chromosome data of these species corroborate this
relationship, since F. atra and G. chloropus share the same chromosome rearrangements, such as
associations GGA6/GGA7, GGA4/GGA5 and fissions of GGA4p and GGA5, not found in A. cajaneus
(Figure 4B and Tables 1 and 2). In this way A. cajaneus, which shares less chromosome syntenies with
the other two species (F. atra and G. chloropus), would be more basal than the ‘Fulica clade’.

In our previous study with Eurypyga helias (Eurypygidae), formerly included in Gruiformes, but
now regarded as belonging to a different order (Eurypygiformes) with only two families (Rynochetidae
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and Eurypygidae), we had proposed that the putative common ancestral karyotype of core Gruiformes
would have a fission of GGA4p, since it had been found in the three species studied (P. viridis, F. atra
and G. chloropus) (Table 1; Table 2) [10,17]. If this hypothesis was correct, A. cajaneus would have
regained the ancestral character. Alternatively, the absence of this fission in A. cajaneus indicates that it
does not represent a synapomorphy of the Gruiformes.

According to [29], there are regions of bird genomes that are prone to breakage, facilitating
chromosomal rearrangements, and this could explain the fission of GGA4p in some species but not in
A. cajaneus. As more bird genomes are sequenced, the reasons for the conservation of some syntenic
groups, while others were disrupted and reorganized, will become clearer.

Despite the fact that the phylogenetic position of the Psophiidae family is not well resolved
within the Core Gruiformes [4], our results show that P. viridis shares some rearrangements with F. atra
and G. chloropus, such as fission of GGA4p and association of GGA6/GGA7 (Table 1; Table 2); these
rearrangements place P. viridis close to F. atra and G. chloropus (Rallidae family) (Figure 5).

Accordingly, the last common ancestor from the Core Gruiformes would have a karyotype similar
to the putative ancestral avian karyotype (PAK) [16], because some rearrangements that were found
in this group are the result of independent events, such as the association between GGA5/GGA7 in
A. cajaneus, despite the fact that some association and fission events were not found in all the species
analyzed (Figure 5).

Thus, molecular cytogenetic analysis confirms earlier studies on the relationships between F. atra
and G. chloropus. Furthermore, they support the fact that the chromosome rearrangements accumulated
in P. viridis are similar to the Rallidae species, although A. cajaneus shows a karyotype organization
different from F. atra and G. chloropus. Nevertheless, this study has improved our understanding of the
process of karyotype evolution in the Core Gruiformes.
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