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Simple Summary: Numerous tiny (micro)chromosomes are a characteristic feature associated with
birds, being found in smaller numbers in other organisms and absent in many, such as mammals. Al-
though microchromosomes constitute a large portion of the genome in birds, data on them pertaining
to comparative studies between birds are still scarce. This is the case in shorebirds (Charadriiformes),
a group with a great variety of species. The aim of this study was to provide insight regarding the
evolution of the microchromosomes of three species of shorebirds—the red knot (Calidris canutus),
the wattled jacana (Jacana jacana), and the southern lapwing (Vanellus chilensis). The experiments are
referred to as cross-species fluorescence in situ hybridization (FISH) mapping using probes called
bacterial artificial chromosomes (or BACs), two (one labelled in red and one labelled in green) for
every microchromosome. The results thus appear as the microchrochromosome with one green and
one red end, revealing different patterns of organization over evolutionary time. In the red knot, they
fuse together, but in the southern lapwing, they hardly change. We also described a new chromosome
number for the red knot (92 in total). In conclusion, this study contributed to the understanding of
microchromosomes organization and evolution of three shorebird species.

Abstract: Microchromosomes, once considered unimportant elements of the genome, represent
fundamental building blocks of bird karyotypes. Shorebirds (Charadriiformes) comprise a wide
variety of approximately 390 species and are considered a valuable model group for biological
studies. Despite this variety, cytogenetic analysis is still very scarce in this bird order. Thus, the
aim of this study was to provide insight into the Charadriiformes karyotype, with emphasis on
microchromosome evolution in three species of shorebirds—Calidris canutus, Jacana jacana, and
Vanellus chilensis—combining classical and molecular approaches. Cross-species FISH mapping
applied two BAC probes for each microchromosome, GGA10–28 (except GGA16). The experiments
revealed different patterns of microchromosome organization in the species investigated. Hence,
while in C. canutus, we found two microchromosomes involved in chromosome fusions, they were
present as single pairs in V. chilensis. We also described a new chromosome number for C. canutus
(2n = 92). Hence, this study contributed to the understanding of genome organization and evolution
of three shorebird species.

Keywords: microchromosome; avian karyotype; bird; BAC; FISH; comparative genomics; molecu-
lar cytogenetics
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1. Introduction

The order Charadriiformes, commonly known as shorebirds, comprises approximately
390 species, divided into 13 families [1]. According to Baker et al. [2], the morphological
analysis of the fossils with molecular studies suggests that this group originated during
the Cretaceous period between 79 and 102 million years ago. Phylogenetic studies support
three major clades: Lari (gulls, auks, and allies plus buttonquails), Scolopaci (sandpipers,
jacanas, and allies), and Charadrii (plovers, oystercatchers, and allies) [2]. This order is
a monophiletic clade where the genus Vanellus from clade Charadrii is more basal than
the genera Tringa and Jacana from clade Scolopaci [3]. Considering the great diversity
in the number of species, shorebirds are an excellent model group to investigate several
biological questions, such as morphology, ecological diversification, and phylogenetic
relationships [4].

Regarding genome organization, the majority of reports on shorebirds are based on
classical cytogenetics, limited in most cases to conventional staining with Giemsa (reviewed
in Degrandi et al. [5]). However, these studies revealed that shorebirds have an exceptional
range of diploid numbers, ranging from 2n = 42 in Burhinus oedicnemus [6] to 2n = 98 in
Gallinago gallinago [7], indicating that interchromosomal rearrangements played important
role in the evolutionary history of this group. Hence, considering that the typical avian
karyotype has approximately 2n = 80 chromosomes [8], shorebirds represent an excellent
model for studying chromosome evolution.

The first detailed studies focused on chromosome organization among shorebirds
came from chromosome painting data using different sets of paints: Gallus gallus [6,9],
B. oedicnemus [6,10–12], Leucopternis albicollis [9], and Zenaida auriculata [13]. These studies
revealed extensive chromosome reorganization in some species, while others retained a
conserved karyotype, similar to the putative avian ancestral karyotype. For instance, in
B. oedicnemus (Clade Charadrii), chromosome reorganization involved mainly chromosome
fusions [6], while in Jacana jacana (Clade Scolopaci), the process was mediated by chro-
mosome fusions and fissions [13]. In Actitis macularius (Clade Scolopaci), several fissions
involving macrochromosomes were described [11]. In Larus argentatus (Clade Lari), only
fusions of macrochromosomes with microchromosomes were detected [10]. On the other
hand, Charadrius collaris and Vanellus chilensis, both included in the Clade Charadrii, have a
typical avian karyotype [9,12].

The data obtained from chromosome painting contributed to our knowledge about
chromosome evolution in shorebirds; however, they were limited to the macrochromo-
somes in most of the reports (this is still true of most avian karyotype studies). Although
B. oedicnemus provides insights about rearrangements involving microchromosomes, the
exact role of these small elements in the rearrangements were not identified [10–12]. An
alternative approach to investigate the microchromosome organization is bacterial artificial
chromosomes (BACs) derived from chicken and zebra finch. These probes have been used
in several avian orders, but interchromosomal rearrangements involving the microchro-
mosomes were found only in a few avian orders [14–18]. Among shorebirds, BAC FISH
is limited to Scolopax rusticola (Clade Scolopaci), where no evidence of interchromosomal
rearrangements involving microchromosomes was found [16].

The presence of so many microchromosomes is a peculiar characteristic for nearly
all birds. This feature possibly evolved around 250 million years ago [19,20]. The avian
karyotype is characterized by containing around 2n = 80, among those 40 pairs, 30 pairs are
usually microchromosomes with size ranging between 0.5 and 2.5 µm [21]. Some studies
suggest that the common ancestor of birds presented microchromosomes in its karyotype,
which possibly arose from chromosome fissions [22,23]. The presence of these tiny elements
in the bird genome for such a long period of time implies an evolutionary success of these
vertebrates [20,22,23].

Considering that information on cross-species chromosome mapping in shorebirds is
limited to macrochromosomes, further studies are necessary to improve our understanding
of the role of microchromosomes in the karyotype organization of these birds. Hence, in
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this study, we explored the microchromosome organization in three shorebirds species
using chicken and zebra finch BACs. The aim was to improve our knowledge of its
karyotype, especially regarding microchromosomes. Our results revealed a different
pattern of microchromosome organization in each investigated species. We also performed
a comparative analysis with related Charadriiformes and other birds.

2. Materials and Methods
2.1. Animals’ Collection and Chromosome Preparation

Samples (Table 1) were collected from individuals in their natural environment accord-
ing to the permission of SISBIO 61047-4–ICMBio and the experiments were approved by
the ethics committee from Universidade Federal do Pampa (CEUA 019/2020). For each
individual, skin biopsies or feather pulp samples were collected to establish fibroblast cell
culture in order to obtain chromosome preparations. Cells were cultured in flasks (25 cm2)
with DMEM cell culture media (GIBCO), supplemented with 15% fetal bovine serum
(GIBCO) and 1% penicillin (10,000 units/mL)/streptomycin (10,000 µg/mL) (GIBCO), and
incubated at 37 ◦C [24]. Metaphase chromosomes were obtained according to standard
procedures involving exposure to colcemid (1 h, 37 ◦C), hypotonic treatment (0.075 M
KCl, 15 min, 37 ◦C), and fixation with methanol/acetic acid (3:1). V. chilensis species was
also sampled by the direct chromosome preparation method, where embryo cells were
dissociated by 2 mL of trypsin 0.25% EDTA for approximately 10 min, then the sample was
placed in 10 mL of RPMI 1040 medium pre warmed at 37 ◦C with three drops of colchicine
0.05% and incubated for 1 h at 37 ◦C, followed by hypotonic treatment and fixation [25].

Table 1. List of the avian species investigated and the approaches used. Brazilian States: RS, Rio
Grande do Sul; PA, Pará.

Species Sex Locality Macrochromosomes
Study

Microchromosomes
Study

Calidris canutus Female Belém, PA, Brazil - Present study
Jacana jacana Female São Gabriel, RS, Brazil Kretschmer et al. [13] Present study

Vanellus chilensis Male São Gabriel, RS, Brazil Kretschmer et al. [9];
Pinheiro et al. [12] Present study

2.2. Karyotype Description

After chromosome harvesting, the cell suspension was dropped onto clean glass
slides and air-dried, following the staining with Giemsa 5% in phosphate buffer with
pH 6.8. To determine the diploid chromosome number and chromosomal morphologies,
we analyzed at least 30 metaphases. Chromosomal morphology and karyotype ordering
were determined according to Guerra [26].

2.3. FISH Experiments Using Chicken and Zebra Finch Bacterial Artificial Chromosomes (BACs)

Two BAC probes from chicken (Gallus gallus, CH261) or zebra finch (Taeniopygia guttata,
TGMCBA) per microchromosomes (GGA10–28, except GGA16) were applied for cross-
species FISH mapping in Calidris canutus, Jacana jacana, and Vanellus chilensis (Supplemen-
tary Materials Table S1). The BAC clone isolation, amplification, labeling, and hybridization
were performed following the protocol described by O’Connor et al. [16]. The FISH results
were confirmed by analyzing at least 10 metaphases per experiment. Images were captured
with a CCD camera and SmartCapture (Digital Scientific UK) system, coupled to an Olym-
pus BX61 epifluorescence microscope. Final image processing was performed using Adobe
Photoshop 7.0.

Regardless of the fact that we used BAC probes from chicken and zebra finch libraries,
the results were compared with chicken, once it represents the ancestral state. Most of
the BAC probes used were obtained from chicken, but, for some microchromosomes, the
chicken BACs did not hybridize successfully in all bird species [27]; in these cases, we
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used BAC probes from the zebra finch. In order to identify the chromosomal rearrange-
ments, we considered the following: (i) no rearrangements if both BAC probes for each
microchromosome produced FISH signals in the same microchromosome and with a size
of micro; (ii) fission event when both BAC probes for each microchromosome produced
FISH signals in different microchromosome; and (iii) fusion event when probes intended
for a microchromosome hybridized to a macrochromosome.

3. Results
3.1. Karyotype Description

The karyotype of Jacana jacana (2n = 82) and Vanellus chilensis (2n = 78) was found
to be consistent with previous studies [9,13]. However, we found a diploid number for
Calidris canutus (2n = 92), which was different to 2n = 90, as previously described [28].
Our results showed that most autosomes are acrocentric, except for pairs 6 and 9, which
are metacentric and submetacentric, respectively. The smallest microchromosomes are
telocentric, the Z sex chromosome is a submetacentric macrochromosome with the size
between the first and the second pairs, and the W sex chromosome corresponds to a small
metacentric element with a size between pairs 20 and 21 (Figure 1).
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3.2. Fluorescence In Situ Hybridization (FISH) Experiments

The BAC FISH revealed different patterns of microchromosome organization in the
species investigated. In Calidris canutus, two microchromosomes were involved in chro-
mosome fusions (GGA 12 and GGA14). GGA12 probes produced signals in a medium
macrochromosome, indicating the fusion with other microchromosome or a segment from
a macrochromosome (as a result of fission events). GGA 14 hybridized on a macrochromo-
some, indicating a fusion of this chromosome with a macrochromosome. In Jacana jacana,
the results revealed the conservation of the microchromosomes tested as one individual
pair each; however, a gap in pair 8, previously described by Kretschmer et al. [13], re-
mained unresolved, indicating that smaller chicken chromosomes were involved in that
fusion. In contrast, there was no evidence of rearrangements involving microchromosomes
in Vanellus chilensis (Figure 2). Table 2 summarizes the BAC FISH results in the three
shorebirds investigated.
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Figure 2. Examples of FISH experiments using chicken (GGA) bacterial artificial chromosome (BAC)
probes in shorebirds. FISH results in C. canutus: chromosome 12 CH261-60P3 (red) and CH261-4M5
(green) (a) and chromosome 14 CH261-122H14 (red) and CH261-69D20 (green) (b). FISH results in
J. jacana: chromosome 18 CH261-72B18 (red) and CH261-60N6 (green) (c) and chromosome 26 CH261-
170L23 (red) and CH261-186M13 (green) (d). FISH results in V. chilensis: chromosome 17 CH261-42P16
(ged) and TGMCBA-375I5 (green) (e) and chromosome 28 CH261-72A10 (red) and CH261-64A15
(green) (f). Scale bar 5 µm.

Table 2. Microchromosome correspondence between chicken and three shorebirds: Vanellus chilensis
(VCH), Jacana jacana (JJA), and Calidris canutus (CCA).

Chicken
Chromosomes

Species

VCH JJA CCA

GGA10 * 9 12 Micro
GGA11 11 16 Micro
GGA12 12 17 Fusion
GGA13 13 18 Micro
GGA14 14 19 Fusion
GGA15 15 20 Micro
GGA16 No data No data No data
GGA17 17 22 Micro
GGA18 18 23 Micro
GGA19 19 24 Micro
GGA20 20 25 Micro
GGA21 21 26 Micro
GGA22 22 27 Micro
GGA23 23 28 Micro
GGA24 24 29 Micro
GGA25 25 30 Micro
GGA26 26 31 Micro
GGA27 27 32 Micro
GGA28 28 33 Micro

* The chromosomal correspondence to GGA10 of V. chilensis (VCH) and J. jacana from Kretschmer et al. [9] and
Kretschmer et al. [13], respectively.
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4. Discussion

BAC probes from chicken and zebra finch microchromosomes are a powerful tool to
delineate chromosome homologies and to identify chromosomal rearrangements. This
study thus contributed to the understanding of microchromosomes organization and
evolution in shorebirds by investigating the karyotypes of Calidris canutus, Jacana jacana,
and Vanellus chilensis. The karyotypes of J. jacana and V. chilensis have been previously
described as 2n = 82 and 2n = 78, respectively [9,13], which was confirmed by our results.
In addition, we found a new diploid number for C. canutus. It was previously described
as 2n = 90 [28], but we found 2n = 92, owing to an additional pair of microchromosomes;
however, the discrepancy between the new diploid number is probably due to technics
limitations, which is a common mistake in avian classic cytogenetics because of its high
number of very small microchromosomes.

Our molecular cytogenetic characterization using BAC FISH from the microchromo-
somes of chicken and zebra finch on metaphases of three shorebirds species confirmed that
most of the chicken microchromosomes are conserved as entire units, as already reported
in previous studies that demonstrated the high degree of conservation of microchromo-
somes in birds [16,29]. Interestingly, each species investigated here illustrated different
microchromosome involvements in rearrangements. For instance, we found evidence of
their involvement in interchromosomal rearrangements in C. canutus and J. jacana, while
in V. chilensis, they were conserved as single pairs. In our study, we did not investigate
the intrachromosomal rearrangements, as we used only two BAC probes per microchro-
mosome. Nevertheless, these rearrangements in microchromosomes are very important
features in bird genome owing to its capability of generating phenotypic differentiation, as
reported for Calidris pugnax, where different mating phenotypes are described due to an
intrachromosomal rearrangement on microchromosome 11 [30,31].

Analyzing the karyotype of V. chilensis and C. collaris, Pinheiro et al. [12] found
differences in the microchromosomes with FISH signals using Burhinus oedicnemus probes
corresponding to microchromosomes. These authors suggested that the variation in the
number of signals was indicative of the considerable number of rearrangements involving
microchromosomes in V. chilensis. However, our results disregard interchromosomal
rearrangements involving the microchromosomes in this species. It is likely that the
misinterpretation of FISH results by these authors was because of the background signal
produced as a result of hybridization to repetitive sequences.

Although we did not find fusions involving microchromosomes in J. jacana, a previous
study revealed a gap in pair 8 of this species, which was proposed as the result of a fusion
between a microchromosome and a segment from the ancestral chromosome 5 (GGA5) [13].
This fusion remained unresolved, once none of the probes used in our study produced
signals in the chromosome 8 of J. jacana. Nevertheless, it is important to highlight the fact
that BAC probes corresponding to the chicken chromosome 28–39 have not been developed
so far. Hence, a plausible explanation still relies on a possible fusion of a microchromosome
pair within this range (pairs 28–39).

In contrast, in C. canutus, microchromosome pairs 12 and 14 were involved in fusions.
According to Kretschmer et al. [17], these microchromosomes are more likely to undergo
interchromosomal rearrangements in birds. Fusion patterns differ between lineages, as
observed in Waters et al. [29]. A possible explanation for the fusion events in C. canutus
could be the presence and location of some specific motifs of repetitive sequence insertions,
such as transposable elements, as observed in Psittaciformes species [32]. Besides that, no
evidence of the occurrence of fissions of microchromosomes was observed in our results,
indicating that the increase in the diploid number in C. canutus was due to macrochromo-
some fissions or even a smaller microchromosome fission (microchromosomes between
28–39). Similar results were observed in Scolopax rusticola, which have 2n = 96, and only
macrochromosome fissions were found [16,33]. However, in S. rusticola, no evidence of
microchromosome fusions was found.
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BAC probes from microchromosomes have been used in several bird orders and
have significantly contributed to our knowledge about microchromosome organization
and evolution [14,16–18,27,34,35]. Interchromosomal rearrangements involving these tiny
chromosomes were found only in some orders, such as Falconiformes, Psittaciformes,
Caprimulgiformes, Cuculiformes, Suliformes, and Passeriformes, always in species with a
relatively low diploid number for birds (usually lower than 2n = 74), indicating that the
decrease in the diploid number was due to microchromosome fusions. However, to the
best of our knowledge, this is the first time that fusions involving microchromosomes were
found in a species with a high diploid number (e.g., C. canutus, 2n = 92), indicating that
this type of rearrangements is not limited to species with a low diploid number.

Until now, including our study, the microchromosomal dynamics in karyotype evo-
lution have been investigated in detail in four shorebirds species, three from the clade
Scolopaci, S. rusticola [16], C. canutus, and J. jacana, and one from the clade Charadrii,
V. chilensis. Considering that no interchromosomal rearrangements involving the mi-
crochromosomes were found in S. rusticola, we propose that the common ancestor for the
clade Scolopaci had the ancestral pattern of microchromosome organization similar to
G. gallus. After the divergence, each Scolopaci species has undergone different strategies
in the microchromosome organization; that is, remained conserved as in S. rusticola or
rearranged as in C. canutus and J. jacana. Similarly, the common ancestor for the clade
Charadrii had the ancestral pattern once the microchromosome organization remained
highly conserved in V. chilensis.

Previously, analyzing the macrochromosomes using chromosome painting, we pro-
posed that, after divergence, each shorebird suborder underwent different chromosome
rearrangements [13], which was later confirmed by others [12]. Here, we extended this
hypothesis to microchromosomes as well.

5. Conclusions

Our results illustrate that homology mapping using BAC probes for microchromo-
somes is necessary to understand the dynamics of genome reorganization in birds. The
results of chromosome painting for both macro and microchromosomes of shorebirds
suggest that the karyotypical evolution of these birds involved different chromosomal
strategies in each clade. It is also important to highlight that, although the species are
closely related, we have found different microchromosome behavior for each shorebird.
Furthermore, our results in Calidris canutus indicated that species with a high diploid
number could also undergo microchromosomal fusions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani12213052/s1, Table S1: List of BACs applied to shorebird species.
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