90 research outputs found

    Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita

    Get PDF
    Myotonia congenita (MC) is an inherited muscle disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. Both recessive (Becker's disease) or dominant (Thomsen's disease) MC are caused by mutations in the CLCN1 gene encoding the voltage-dependent chloride ClC-1 channel, which is quite exclusively expressed in skeletal muscle. More than 200 CLCN1 mutations have been associated with MC. We provide herein a detailed clinical, molecular, and functional evaluation of four patients with recessive MC belonging to three different families. Four CLCN1 variants were identified, three of which have never been characterized. The c.244A>G (p.T82A) and c.1357C>T (p.R453W) variants were each associated in compound heterozygosity with c.568GG>TC (p.G190S), for which pathogenicity is already known. The new c.809G>T (p.G270V) variant was found in the homozygous state. Patch-clamp studies of ClC-1 mutants expressed in tsA201 cells confirmed the pathogenicity of p.G270V, which greatly shifts the voltage dependence of channel activation toward positive potentials. Conversely, the mechanisms by which p.T82A and p.R453W cause the disease remained elusive, as the mutated channels behave similarly to WT. The results also suggest that p.G190S does not exert dominant-negative effects on other mutated ClC-1 subunits. Moreover, we performed a RT-PCR quantification of selected ion channels transcripts in muscle biopsies of two patients. The results suggest gene expression alteration of sodium and potassium channel subunits in myotonic muscles; if confirmed, such analysis may pave the way toward a better understanding of disease phenotype and a possible identification of new therapeutic options

    Blood film examination for vacuolated and PASpositive lymphocytes as diagnostic screening test for patients with late onset Pompe disease (LOPD)

    Get PDF
    Pompe disease is an inherited metabolic multisystemic disorder resulting in glycogen storage in different tissues, caused by a deficiency of the lysosomal enzyme acid alfa-glucosidase. Glycogen storage is often a morphological marker in muscle biopsy of Pompe patients but it could be also present in other tissues. Abnormal cytoplasmic vacuolation of lymphocytes, detectable on routine blood film examination, has been recently proposed as possible screening in these patients. We examined blood smear of 16 LOPD patients, aged 14-71 years. The cohort phenotype encompasses 3 patients with presymptomatic hyperckemia, 2 with myalgia and faticability, and 11 with proximal muscle weakness. Among those, 6 patients are on ERT treatment. We collected also peripheral blood films from 20 healthy controls and from 12 patients affected by other muscle glycogenoses. Blood sample was followed by preparation of four blood films: two of them were stained by May-Grunwald/ Giemsa (MGG) end the other two by PAS. . To investigate the diagnostic value of the test, we quantified the percentage of vacuolated lymphocytes and the percentage of PAS-positive lymphocytes. The mean values of PAS-positive lymphocytes in LOPD patients (25.6%) were significantly higher than those of healthy controls (4.6%) and of patients with other muscle glycogenoses (4.8%). In this group of patients, we have shown that PAS-positive cytoplasmic vacuolation of lymphocytes in peripheral blood films could be considered as a reliable screening tool to support an early diagnosis of Pompe disease

    Case Report: Rare Homozygous RNASEH1 Mutations Associated With Adult-Onset Mitochondrial Encephalomyopathy and Multiple Mitochondrial DNA Deletions

    Get PDF
    Mitochondrial DNA (mtDNA) maintenance disorders embrace a broad range of clinical syndromes distinguished by the evidence of mtDNA depletion and/or deletions in affected tissues. Among the nuclear genes associated with mtDNA maintenance disorders, RNASEH1 mutations produce a homogeneous phenotype, with progressive external ophthalmoplegia (PEO), ptosis, limb weakness, cerebellar ataxia, and dysphagia. The encoded enzyme, ribonuclease H1, is involved in mtDNA replication, whose impairment leads to an increase in replication intermediates resulting from mtDNA replication slowdown. Here, we describe two unrelated Italian probands (Patient 1 and Patient 2) affected by chronic PEO, ptosis, and muscle weakness. Cerebellar features and severe dysphagia requiring enteral feeding were observed in one patient. In both cases, muscle biopsy revealed diffuse mitochondrial abnormalities and multiple mtDNA deletions. A targeted next-generation sequencing analysis revealed the homozygous RNASEH1 mutations c.129-3C>G and c.424G>A in patients 1 and 2, respectively. The c.129-3C>G substitution has never been described as disease-related and resulted in the loss of exon 2 in Patient 1 muscle RNASEH1 transcript. Overall, we recommend implementing the use of high-throughput sequencing approaches in the clinical setting to reach genetic diagnosis in case of suspected presentations with impaired mtDNA homeostasis

    Pharmacological Inhibition of Necroptosis Protects from Dopaminergic Neuronal Cell Death in Parkinson's Disease Models

    Get PDF
    Dysfunctions in mitochondrial dynamics and metabolism are common pathological processes associated with Parkinson's disease (PD). It was recently shown that an inherited form of PD and dementia is caused by mutations in the OPA1 gene, which encodes for a key player in mitochondrial fusion and structure. iPSC-derived neural cells from these patients exhibited severe mitochondrial fragmentation, respiration impairment, ATP deficits, and heightened oxidative stress. Reconstitution of normal levels of OPA1 in PD-derived neural cells normalized mitochondria morphology and function. OPA1-mutated neuronal cultures showed reduced survival in vitro. Intriguingly, selective inhibition of necroptosis effectively rescued this survival deficit. Additionally, dampening necroptosis in MPTP-treated mice protected from DA neuronal cell loss. This human iPSC-based model captures both early pathological events in OPA1 mutant neural cells and the beneficial effects of blocking necroptosis, highlighting this cell death process as a potential therapeutic target for PD. Iannielli et al. generate iPSCs from Parkinson's disease patients with OPA1 mutations and find that derived NPCs have mitochondria with impaired morphology and bioenergetics. Nec-1s, a pharmacological inhibitor of necroptosis, promotes the survival of human OPA1 mutant neurons and attenuates dopaminergic neuronal loss in MPTP-treated mice

    Vacuolated PAS-Positive Lymphocytes on Blood Smear: An Easy Screening Tool and a Possible Biomarker for Monitoring Therapeutic Responses in Late Onset Pompe Disease (LOPD)

    Get PDF
    Background: Primary aim was to investigate the diagnostic value of PAS-positive vacuolated lymphocytes on blood smear in Late Onset Pompe Disease (LOPD) patients and, secondly, to evaluate its potential utility in monitoring treatment effects.Methods: We examined blood smear of 26 LOPD patients. We evaluated 10 treated and 16 untreated LOPD patients. Among the latter group, 7 patients later initiated ERT and were tested again 6 months after start. Blood smear was also sampled from 82 controls and 19 patients with other muscle glycogenoses (MGSDs). PAS staining was used to evaluate: (1) presence of lymphocytes with glycogen-filled vacuoles, (2) quantification of vacuolated lymphocytes.Results: We found that PAS-positive lymphocytes were significantly higher in LOPD patients than in controls or other MGSDs (p < 0.05 and p < 0.001, respectively). ROC curve for discriminating between untreated LOPD patients and controls yielded an AUC of 1.00 (95%CI 1.00–1.00; p < 0.0001). PAS-positive lymphocyte cutoff level of >10 yielded sensitivity of 100% (95%CI 78–100%), specificity of 100% (95%CI 96–100%), and positive predictive value of 100%. Patients studied before and after ERT showed a dramatic decrease of PAS-positive vacuolated lymphocytes number (p = 0.016). In other MGSDs, PAS-positive lymphocytes were significantly lower that untreated LOPD patients but higher than controls.Conclusions: Our data suggest that the Blood Smear Examination (BSE) for PAS-positive lymphocytes quantification could be used as a simple and sensitive test for a quick screening of suspected Pompe disease. The quantification of vacuolated lymphocytes appears to be also a valuable tool for monitoring the efficacy of treatment in LOPD patients

    Primary mitochondrial myopathy: Clinical features and outcome measures in 118 cases from Italy

    Get PDF
    Objective: To determine whether a set of functional tests, clinical scales, patient-reported questionnaires, and specific biomarkers can be considered reliable outcome measures in patients with primary mitochondrial myopathy (PMM), we analyzed a cohort of Italian patients. Methods: Baseline data were collected from 118 patients with PMM, followed by centers of the Italian network for mitochondrial diseases. We used the 6-Minute Walk Test (6MWT), Timed Up-and-Go Test (x3) (3TUG), Five-Times Sit-To-Stand Test (5XSST), Timed Water Swallow Test (TWST), and Test of Masticating and Swallowing Solids (TOMASS) as functional outcome measures; the Fatigue Severity Scale and West Haven-Yale Multidimensional Pain Inventory as patient-reported outcome measures; and FGF21, GDF15, lactate, and creatine kinase (CK) as biomarkers. Results: A total of 118 PMM cases were included. Functional outcome measures (6MWT, 3TUG, 5XSST, TWST, and TOMASS) and biomarkers significantly differed from healthy reference values and controls. Moreover, functional measures correlated with patients' perceived fatigue and pain severity. Patients with either mitochondrial or nuclear DNA point mutations performed worse in functional measures than patients harboring single deletion, even if the latter had an earlier age at onset but similar disease duration. Both the biomarkers FGF21 and GDF15 were significantly higher in the patients compared with a matched control population; however, there was no relation with severity of disease. Conclusions: We characterized a large cohort of PMM by evaluating baseline mitochondrial biomarkers and functional scales that represent potential outcome measures to monitor the efficacy of treatment in clinical trials; these outcome measures will be further reinvestigated longitudinally to define the natural history of PMM

    Targeted gene panel screening is an effective tool to identify undiagnosed late onset Pompe disease

    Get PDF
    Mutations in the GAA gene may cause a late onset Pompe disease presenting with proximal weakness without the characteristic muscle pathology, and therefore a test for GAA activity is the first tier analysis in all undiagnosed patients with hyperCKemia and/or limb-girdle muscular weakness. By using MotorPlex, a targeted gene panel for next generation sequencing, we analyzed GAA and other muscle diseasegenes in a large cohort of undiagnosed patients with suspected inherited skeletal muscle disorders (n = 504). In this cohort, 275 patients presented with limb-girdle phenotype and/or an isolated hyperCKemia. Mutational analysis identified GAA mutations in ten patients. Further seven affected relatives were identified by segregation studies. All the patients carried the common GAA mutation c.-32-13T > G and a second, previously reported mutation. In the subcohort of 275 patients with proximal muscle weakness and/or hyperCKemia, we identified late-onset Pompe disease in 10 patients. The clinical overlap between Pompe disease and LGMDs or other skeletal muscle disorders suggests that GAA and the genes causing a metabolic myopathy should be analyzed in all the gene panels used for testing neuromuscular patients. However, enzymatic tests are essential for the interpretation and validation of genetic results. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Late and Severe Myopathy in a Patient With Glycogenosis VII Worsened by Cyclosporine and Amiodarone

    Get PDF
    Glycogenosis VII (GSD VII) is a rare autosomal recessive glycogen storage disorder caused by mutations in the PFKM gene encoding the phosphofructokinase (PFK) enzyme. A classical form with exercise intolerance, contractures, and myoglobinuria, a severe multisystem infantile form, an hemolytic variant and a late-onset form usually presenting with muscle pain and mild fixed proximal weakness have been reported. We describe a 65-year-old man affected by muscle PFK deficiency who, since the age of 33, presented with exercise intolerance and myoglobinuria. Muscle biopsy showed a vacuolar myopathy with glycogen storage. The biochemical assay of PFK-M showed very low residual activity (6%). Genetic analysis of PFKM gene evidenced the presence of the heterozygote c.1817A>C (p.Asp543Ala) and c.488 G>A (p.Arg100Gln) pathogenic mutations. In his fifth decade, he started cyclosporine after liver transplantation for hepatocellular carcinoma and, then, amiodarone because of atrial fibrillation. In the following years, he developed a progressive and severe muscle weakness, mainly involving lower limbs, up to a loss of independent walking. Muscle MRI showed adipose substitution of both anterior and posterior thigh muscles with selective sparing of the medial compartment. Marked signs of adipose substitution were also documented in the legs with a selective replacement of gemelli and peroneus muscles. The temporal relationship between the patient's clinical worsening and chronic treatment with cyclosporine and amiodarone suggests an additive toxic damage by these two potentially myotoxic drugs determining such an unusually severe phenotype, also confirmed by muscle MRI findings
    • …
    corecore