109 research outputs found

    The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases

    Get PDF
    Prp19 is an essential splicing factor and a member of the U-box family of E3 ubiquitin ligases. Prp19 forms a tetramer via a central coiled-coil domain. Here, we show the U-box domain of Prp19 exists as a dimer within the context of the Prp19 tetramer. A high-resolution structure of the homodimeric state of the Prp19 U-box was determined by X-ray crystallography. Mutation of the U-box dimer interface abrogates U-box dimer formation and is lethal in vivo. The structure of the U-box dimer enables construction of a complete model of Prp19 providing insights into how the tetrameric protein functions as an E3 ligase. Finally, comparison of the Prp19 U-box homodimer with the heterodimeric complex of BRCA1/BARD1 RING-finger domains uncovers a common architecture for a family of oligomeric U-box and RING-finger E3 ubiquitin ligases, which has mechanistic implications for E3 ligase-mediated polyubiquitination and E4 polyubiquitin ligases. © 2006 American Chemical Society

    Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for Sub-130 nm Technologies

    Get PDF
    We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events

    ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana

    Get PDF
    Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability

    Rating of personality disorder features in popular movie characters

    Get PDF
    BACKGROUND: Tools for training professionals in rating personality disorders are few. We present one such tool: rating of fictional persons. However, before ratings of fictional persons can be useful, we need to know whether raters get the same results, when rating fictional characters. METHOD: Psychology students at the University of Copenhagen (N = 8) rated four different movie characters from four movies based on three systems: Global rating scales representing each of the 10 personality disorders in the DSM-IV, a criterion list of all criteria for all DSM-IV personality disorders in random order, and the Ten Item Personality Inventory for rating the five-factor model. Agreement was estimated based on intraclass-correlation. RESULTS: Agreement for rating scales for personality disorders ranged from 0.04 to 0.54. For personality disorder features based on DSM-IV criteria, agreement ranged from 0.24 to 0.89, and agreement for the five-factor model ranged from 0.05 to 0.88. The largest multivariate effect was observed for criteria count followed by the TIPI, followed by rating scales. Raters experienced personality disorder criteria as the easiest, and global personality disorder scales as the most difficult, but with significant variation between movies. CONCLUSION: Psychology students with limited or no clinical experience can agree well on the personality traits of movie characters based on watching the movie. Rating movie characters may be a way to practice assessment of personality

    Trees and shrubs as sources of fodder in Australia

    Get PDF
    Experience with browse plants in Australia is briefly reviewed in terms of their forage value to animals, their economic value to the landholder and their ecological contribution to landscape stability. Of the cultivated species only two have achieved any degree of commercial acceptance (Leucaena leucocephala and Chamaecytisus palmensis). Both of these are of sufficiently high forage value to be used as the sole source of feed during seasonal periods of nutritional shortage. Both are also leguminous shrubs that establish readily from seed. It is suggested that a limitation in their present use is the reliance on stands of single species which leaves these grazing systems vulnerable to disease and insects. Grazing systems so far developed for high production and persistence of cultivated species involve short periods of intense grazing followed by long periods of recovery. Similar management may be necessary in the arid and semi-arid rangelands where palatable browse species are in decline

    Detection and quantification of new psychoactive substances (NPSs) within the evolved "legal high" product, NRG-2, using high performance liquid chromatography-amperometric detection (HPLC-AD)

    Get PDF
    The global increase in the production and abuse of cathinone-derived New Psychoactive Substances (NPSs) has developed the requirement for rapid, selective and sensitive protocols for their separation and detection. Electrochemical sensing of these compounds has been demonstrated to be an effective method for the in-field detection of these substances, either in their pure form or in the presence of common adulterants, however, the technique is limited in its ability to discriminate between structurally related cathinone-derivatives (for example: (±)-4′-methylmethcathinone (4-MMC, 2a) and (±)-4′-methyl-N-ethylmethcathinone (4-MEC, 2b) when they are both present in a mixture. In this paper we demonstrate, for the first time, the combination of HPLC-UV with amperometric detection (HPLC-AD) for the qualitative and quantitative analysis of 4-MMC and 4-MEC using either a commercially available impinging jet (LC-FC-A) or custom-made iCell channel (LC-FC-B) flow-cell system incorporating embedded graphite screen-printed macroelectrodes. The protocol offers a cost-effective, reproducible and reliable sensor platform for the simultaneous HPLC-UV and amperometric detection of the target analytes. The two systems have similar limits of detection, in terms of amperometric detection [LC-FC-A: 14.66 μg mL−1 (2a) and 9.35 μg mL−1 (2b); LC-FC-B: 57.92 μg mL−1 (2a) and 26.91 μg mL−1 (2b)], to the previously reported oxidative electrochemical protocol [39.8 μg mL−1 (2a) and 84.2 μg mL−1 (2b)], for two synthetic cathinones, prevalent on the recreational drugs market. Though not as sensitive as standard HPLC-UV detection, both flow cells show a good agreement, between the quantitative electroanalytical data, thereby making them suitable for the detection and quantification of 4-MMC and 4-MEC, either in their pure form or within complex mixtures. Additionally, the simultaneous HPLC-UV and amperometric detection protocol detailed herein shows a marked improvement and advantage over previously reported electroanalytical methods, which were either unable to selectively discriminate between structurally related synthetic cathinones (e.g. 4-MMC and 4-MEC) or utilised harmful and restrictive materials in their design

    The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    Get PDF
    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues

    Exercise and manual physiotherapy arthritis research trial (EMPART): a multicentre randomised controlled trial

    Get PDF
    BACKGROUND: Osteoarthritis (OA) of the hip is a major cause of functional disability and reduced quality of life. Management options aim to reduce pain and improve or maintain physical functioning. Current evidence indicates that therapeutic exercise has a beneficial but short-term effect on pain and disability, with poor long-term benefit. The optimal content, duration and type of exercise are yet to be ascertained. There has been little scientific investigation into the effectiveness of manual therapy in hip OA. Only one randomized controlled trial (RCT) found greater improvements in patient-perceived improvement and physical function with manual therapy, compared to exercise therapy. METHODS AND DESIGN: An assessor-blind multicentre RCT will be undertaken to compare the effect of a combination of manual therapy and exercise therapy, exercise therapy only, and a waiting-list control on physical function in hip OA. One hundred and fifty people with a diagnosis of hip OA will be recruited and randomly allocated to one of 3 groups: exercise therapy, exercise therapy with manual therapy and a waiting-list control. Subjects in the intervention groups will attend physiotherapy for 6-8 sessions over 8 weeks. Those in the control group will remain on the waiting list until after this time and will then be re-randomised to one of the two intervention groups. Outcome measures will include physical function (WOMAC), pain severity (numerical rating scale), patient perceived change (7-point Likert scale), quality of life (SF-36), mood (hospital anxiety and depression scale), patient satisfaction, physical activity (IPAQ) and physical measures of range of motion, 50-foot walk and repeated sit-to stand tests. DISCUSSION: This RCT will compare the effectiveness of the addition of manual therapy to exercise therapy to exercise therapy only and a waiting-list control in hip OA. A high quality methodology will be used in keeping with CONSORT guidelines. The results will contribute to the evidence base regarding the clinical efficacy for physiotherapy interventions in hip OA

    Roles of glial cells in synapse development

    Get PDF
    Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain
    corecore