2,843 research outputs found

    Performance of CDF for B physics

    Full text link
    Hadron colliders can be an abundant source of heavy flavor quarks, but pose a challenge to isolate the physics signals from the high backgrounds. The upgraded CDF II detector, with its precise tracking capabilities and powerful trigger system, is well equipped for this task. The detector is described with an emphasis on actual performance and on techniques to maximize the heavy flavor yield. Some first heavy flavor results are summarized.Comment: Invited talk at the Workshop on the CKM Unitarity Triangle, IPPP Durham, April 2003 (eConf C0304052). 4 pages LaTeX, 2 eps figure

    Test with cosmic rays of the GEM chambers for the LHCb muon system produced in Cagliari

    Get PDF
    The inner region of the first LHCb muon station will be equipped with twelve Gas Electron Multiplier chambers. The seven chambers produced in Cagliari were studied for several days each using cosmic rays. We measured the efficiency, timing resolution, and uniformity, cluster-size and out-of-time multiplicity. We find all seven chambers perform well

    Measurement of the front-end dead-time of the LHCb muon detector and evaluation of its contribution to the muon detection inefficiency

    Full text link
    A method is described which allows to deduce the dead-time of the front-end electronics of the LHCb muon detector from a series of measurements performed at different luminosities at a bunch-crossing rate of 20 MHz. The measured values of the dead-time range from 70 ns to 100 ns. These results allow to estimate the performance of the muon detector at the future bunch-crossing rate of 40 MHz and at higher luminosity

    Performance of the LHCb muon system with cosmic rays

    Full text link
    The LHCb Muon system performance is presented using cosmic ray events collected in 2009. These events allowed to test and optimize the detector configuration before the LHC start. The space and time alignment and the measurement of chamber efficiency, time resolution and cluster size are described in detail. The results are in agreement with the expected detector performance.Comment: Submitted to JINST and accepte

    Performance of the Muon Identification at LHCb

    Full text link
    The performance of the muon identification in LHCb is extracted from data using muons and hadrons produced in J/\psi->\mu\mu, \Lambda->p\pi and D^{\star}->\pi D0(K\pi) decays. The muon identification procedure is based on the pattern of hits in the muon chambers. A momentum dependent binary requirement is used to reduce the probability of hadrons to be misidentified as muons to the level of 1%, keeping the muon efficiency in the range of 95-98%. As further refinement, a likelihood is built for the muon and non-muon hypotheses. Adding a requirement on this likelihood that provides a total muon efficiency at the level of 93%, the hadron misidentification rates are below 0.6%.Comment: 17 pages, 10 figure

    Performance of the LHCb muon system

    Full text link
    The performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at ps = 7 TeV energy is studied. The optimization of the detector setting and the time calibration performed with the first collisions delivered by LHC is described. Particle rates, measured for the wide range of luminosities and beam operation conditions experienced during the run, are compared with the values expected from simulation. The space and time alignment of the detectors, chamber efficiency, time resolution and cluster size are evaluated. The detector performance is found to be as expected from specifications or better. Notably the overall efficiency is well above the design requirementsComment: JINST_015P_1112 201

    Modeling power corrections to the Bjorken sum rule for the neutrino structure function F_1

    Get PDF
    Direct measurements of the the structure functions F_1^{nu p} and F_1^{nu n} at a neutrino factory would allow for an accurate extraction of alpha_s from the Q^2-dependence of the Bjorken sum rule, complementing that based on the Gross-Llewellyn-Smith sum rule for F_3. We estimate the power (1/Q^2-) corrections to the Bjorken sum rule in the instanton vacuum model. For the reduced matrix element of the flavor-nonsinglet twist-4 operator ubar_g_Gdual_gamma_gamma5_u - (u -> d) we obtain a value of 0.18 GeV^2, in good agreement with the QCD sum rule calculations of Braun and Kolesnichenko. Our result allows to reduce the theoretical error in the determination of alpha_s.Comment: 3 pages, 1 figure, uses iopart.cls. Proceedings of the 4th NuFact'02 Workshop "Neutrino Factories based on Muon Storage Rings", Imperial College, London, July 1-6, 200

    The trigger system of the CHORUS experiment

    Get PDF
    A new apparatus for detection of ΜΌ→Μτ\nu_{\mu} \rightarrow \nu_{\tau} oscillation has been successfully constructed and operated by the CHORUS Collaboration for the CERN-WA95 experiment. The design , implementation and performance of the electronic trigger system is described. A trigger efficiency of 99%\% was measured for ΜΌ\nu_{\mu} charged current events and 90%\% for neutral current e vents

    Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV

    Get PDF
    We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1 integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV recorded by the CDF II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are expected from standard model background processes. We place 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115 GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let
    • 

    corecore