96 research outputs found

    Optimisation of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis

    Get PDF
    Lectin’s are proteins capable of recognising and binding to specific oligosaccharide tructures found on glycoproteins and other biomoloecules. As such they have found tility for glycoanalytical applications. One common difficulty encountered in the pplication of these proteins, particularly in multi-well plate assay formats known as Enzyme Linked Lectin Assays (ELLA’s), is in finding appropriate blocking solutions to prevent non-specific binding with plate surfaces. Many commonly used blocking agents contain carbohydrates and generate significant background signals in ELLA’s, limiting the utility of the assay. In this study we examined the suitability of a range of blocking reagents, including rotein based, synthetic and commercially available carbohydrate free blocking eagents, for ELLA applications. Each blocking reagent was assessed against a panel f 19 commercially available biotinylated lectins exhibiting diverse structures and arbohydrate specificities. We identified the synthetic polymer Polyvinyl Alcohol PVA) as the best global blocking agent for performing ELLA’s. We ultimately present n ELLA methodology facilitating broad spectrum lectin analysis of glycoconjugates nd extending the utility of the ELLA

    Long-term Transplant Function After Thrombolytic Treatment Ex Vivo of Donated Kidneys Retrieved 4 to 5 Hours After Circulatory Death

    Get PDF
    Background.\ua0Using a novel thrombolytic technique, we present long-term transplant function, measured by creatinine and iohexol clearance, after utilizing kidneys from porcine donors with uncontrolled donation after circulatory deaths, with 4.5–5 h of warm ischemia.Methods.\ua0Pigs in the study group were subjected to simulated circulatory death. After 2 h, ice slush was inserted into the abdomen and 4.5 h after death, the kidneys were retrieved. Lys-plasminogen, antithrombin-III, and alteplase were injected through the renal arteries on the back table. Subsequent ex vivo perfusion was continued for 3 h at 15\ub0C, followed by 3 h with red blood cells at 32\ub0C, and then transplanted into pigs as an autologous graft as only renal support. Living-donor recipient pigs that did not receive ex vivo perfusion, and unilateral nephrectomized pigs served as the controls.Results.\ua0Pigs in the study group (n = 13), surviving 10 d or more were included, of which 7 survived for 3 mo. Four animals in the living-donor group (n = 6) and all 5 nephrectomized animals survived for 3 mo. Creatinine levels in the plasma and urine, neutrophil gelatinase-associated lipocalin levels, Kidney Injury Marker-1 expression, and iohexol clearance at 3 mo did not differ significantly between the study and living-donor groups. Histology and transmission electron microscopy after 3 mo showed negligible fibrosis and no other damage.Conclusions.\ua0The present method salvages kidneys from extended unontrolled donation after circulatory death using thrombolytic treatment while preserving histology and enabling transplantation after ex vivo reconditioning, with clinically acceptable late function after 3 mo, as measured by creatinine and iohexol clearance

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception
    • 

    corecore