42 research outputs found

    Mass and pressure constraints on galaxy clusters from interferometric SZ observations

    Full text link
    Following on our previous study of an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry, we perform an SZ analysis of a set of simulated clusters and present their mass and pressure profiles. The simulated clusters span a wide range in mass, 2.0 x 10^14 Msun < M200 < 1.0 x 10^15Msun, and observations with the Arcminute Microkelvin Imager (AMI) are simulated through their Sunyaev- Zel'dovich (SZ) effect. We assume that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. By numerically exploring the probability distributions of the cluster parameters given simulated interferometric SZ data in the context of Bayesian methods, we investigate the capability of this model and analysis technique to return the simulated clusters input quantities. We show that considering the mass and redshift dependency of the cluster halo concentration parameter is crucial in obtaining an unbiased cluster mass estimate and hence deriving the radial profiles of the enclosed total mass and the gas pressure out to r200.Comment: 5 pages, 2 tables, 3 figure

    Physical modelling of galaxy clusters detected by the Planck satellite

    Get PDF
    We present a comparison of mass estimates for 5454 galaxy cluster candidates from the second Planck catalogue (PSZ2) of Sunyaev-Zel'dovich sources. We compare the mass values obtained with data taken from the Arcminute Microkelvin Imager (AMI) radio interferometer system and from the Planck satellite. The former of these uses a Bayesian analysis pipeline that parameterises a cluster in terms of its physical quantities, and models the dark matter & baryonic components of a cluster using NFW and GNFW profiles respectively. Our mass estimates derived from Planck data are obtained from the results of the Bayesian detection algorithm PowellSnakes (PwS), are based on the methodology detailed in the PSZ2 paper, and produce two sets of mass estimates; one estimate is calculated directly from the angular radius θ\theta - integrated Comptonisation parameter YY posterior distributions, and the other uses a `slicing function' to provide information on θ\theta based on X-ray measurements and previous Planck mission samples. We find that for 3737 of the clusters, the AMI mass estimates are lower than both values obtained from Planck data. However the AMI and slicing function estimates are within one combined standard deviation of each other for 3131 clusters. We also generate cluster simulations based on the slicing-function mass estimates, and analyse them in the same way as we did the real AMI data. We find that inclusion in the simulations of radio-source confusion & CMB noise and measurable radio-sources causes AMI mass estimates to be systematically low.This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing (HPC) Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council ..⁠. Kamran Javid acknowledges an STFC studentship. Yvette Perrott acknowledges support from a Trinity College Junior Research Fellowship

    Microwave observations of spinning dust emission in NGC6946

    Full text link
    We report new cm-wave measurements at five frequencies between 15 and 18GHz of the continuum emission from the reportedly anomalous "region 4" of the nearby galaxy NGC6946. We find that the emission in this frequency range is significantly in excess of that measured at 8.5GHz, but has a spectrum from 15-18GHz consistent with optically thin free-free emission from a compact HII region. In combination with previously published data we fit four emission models containing different continuum components using the Bayesian spectrum analysis package radiospec. These fits show that, in combination with data at other frequencies, a model with a spinning dust component is slightly preferred to those that possess better-established emission mechanisms.Comment: submitted MNRA

    Further Sunyaev-Zel'dovich observations of two Planck ERCSC clusters with the Arcminute Microkelvin Imager

    Full text link
    We present follow-up observations of two galaxy clusters detected blindly via the Sunyaev-Zel'dovich (SZ) effect and released in the Planck Early Release Compact Source Catalogue. We use the Arcminute Microkelvin Imager, a dual-array 14-18 GHz radio interferometer. After radio source subtraction, we find a SZ decrement of integrated flux density -1.08+/-0.10 mJy toward PLCKESZ G121.11+57.01, and improve the position measurement of the cluster, finding the centre to be RA 12 59 36.4, Dec +60 04 46.8, to an accuracy of 20 arcseconds. The region of PLCKESZ G115.71+17.52 contains strong extended emission, so we are unable to confirm the presence of this cluster via the SZ effect.Comment: 4 tables, 3 figures, revised after referee's comments and resubmitted to MNRA

    High resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 micron emission and evidence of a stellar wind in L675

    Full text link
    We present 25 arcsecond resolution radio images of five Lynds Dark Nebulae (L675, L944, L1103, L1111 & L1246) at 16 GHz made with the Arcminute Microkelvin Imager (AMI) Large Array. These objects were previously observed with the AMI Small Array to have an excess of emission at microwave frequencies relative to lower frequency radio data. In L675 we find a flat spectrum compact radio counterpart to the 850 micron emission seen with SCUBA and suggest that it is cm-wave emission from a previously unknown deeply embedded young protostar. In the case of L1246 the cm-wave emission is spatially correlated with 8 micron emission seen with Spitzer. Since the MIR emission is present only in Spitzer band 4 we suggest that it arises from a population of PAH molecules, which also give rise to the cm-wave emission through spinning dust emission.Comment: accepted MNRA

    AMI observations of unmatched Planck ERCSC LFI sources at 15.75 GHz

    Get PDF
    The Planck Early Release Compact Source Catalogue includes 26 sources with no obvious matches in other radio catalogues (of primarily extragalactic sources). Here we present observations made with the Arcminute Microkelvin Imager Small Array (AMI SA) at 15.75 GHz of the eight of the unmatched sources at declination > +10 degrees. Of the eight, four are detected and are associated with known objects. The other four are not detected with the AMI SA, and are thought to be spurious.Comment: 6 pages, 5 figures, 4 table
    corecore