621 research outputs found

    Reflection positive affine actions and stochastic processes

    Full text link
    In this note we continue our investigations of the representation theoretic aspects of reflection positivity, also called Osterwalder--Schrader positivity. We explain how this concept relates to affine isometric actions on real Hilbert spaces and how this is connected with Gaussian processes with stationary increments

    Reflection positivity for the circle group

    Get PDF
    In this note we characterize those unitary one-parameter groups (Utc)t∈R which admit euclidean realizations in the sense that they are obtained by the analytic continuation process corresponding to reflection positivity from a unitary representation U of the circle group. These are precisely the ones for which there exists an anti-unitary involution J commuting with Uc. This provides an interesting link with the modular data arising in Tomita-Takesaki theory. Introducing the concept of a positive definite function with values in the space of sesquilinear forms, we further establish a link between KMS states and reflection positivity on the circle

    Reflection negative kernels and fractional Brownian motion

    Get PDF
    In this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space E and show in particular that fractional Brownian motion for Hurst index 0<H\le 1/2 is reflection positive and leads via reflection positivity to an infinite dimensional Hilbert space if 0<H <1/2. We also study projective invariance of fractional Brownian motion and relate this to the complementary series representations of GL(2,R). We relate this to a measure preserving action on a Gaussian L^2-Hilbert space L^2(E)

    Global Perspectives in Curriculum Reform

    Get PDF
    In this paper, we describe a curriculum reform project that aims to improve the industrial engineering curriculum through a web-based learning environment that engages students in active and collaborative learning. This environment focuses on engineering problems solving, increased information technology content, and the higher order cognitive skills that are needed to be a successful engineering problem solver. The project has several goals, one of which is to address the need for engineering students to understand how global and societal issues impact the problem solving process and potential solutions. We are addressing this goal by conducting an international team project, where teams consist of students from Iowa State University and the University of Strathclyde in Glasgow, Scotland. In particular, a module has been developed for a course in production systems, offered at both universities, where project teams made up of two students from each university were formed to work on a challenging problem with global consequences. In this paper, we describe the design of this module, discuss our experience with this international collaboration, and place it in context of the large curriculum reform project

    Regularized Field Map Estimation in MRI

    Full text link
    In fast magnetic resonance (MR) imaging with long readout times, such as echo-planar imaging (EPI) and spiral scans, it is important to correct for the effects of field inhomogeneity to reduce image distortion and blurring. Such corrections require an accurate field map, a map of the off-resonance frequency at each voxel. Standard field map estimation methods yield noisy field maps, particularly in image regions with low spin density. This paper describes regularized methods for field map estimation from two or more MR scans having different echo times. These methods exploit the fact that field maps are generally smooth functions. The methods use algorithms that decrease monotonically a regularized least-squares cost function, even though the problem is highly nonlinear. Results show that the proposed regularized methods significantly improve the quality of field map estimates relative to conventional unregularized methods.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85871/1/Fessler22.pd

    Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors

    Get PDF
    Resonant photon tunneling was investigated experimentally in multilayer structures containing a high-contrast (TiO2/SiO2) Bragg mirror capped with a semitransparent gold film. Transmission via a fundamental cavity resonance was compared with transmission via the Tamm plasmon polariton resonance that appears at the interface between a metal film and a one-dimensional photonic bandgap structure. The Tamm-plasmon-mediated transmission exhibits a smaller dependence on the angle and polarization of the incident light for similar values of peak transmission, resonance wavelength, and finesse. Implications for transparent electrical contacts based on resonant tunneling structures are discussed

    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Get PDF
    © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe

    Chironomidae fauna of springs in Iceland – assessing the ecological relevance behind Tuxen’s spring classification

    Get PDF
    Publisher's version (útgefin grein)In 1937, S.L. Tuxen studied the animal community of hot springs in Iceland, and classified springs according to their relative temperature into cold, tepid, and hot. Eighty years after Tuxen’s study, we revisited some of the hot springs in Skagafjörður, Northern Iceland. Our aim was to compare the invertebrate community of 1937 and today, and to assess the stability of hot spring habitats over the years. To test Tuxen’s spring classification on an ecological basis, we furthermore collected chironomid larvae from 24 springs of a broad range of temperature, with samples taken both at the surface area of the spring and at the groundwater level. The chironomid species composition of hot springs differed from that of cold and tepid springs. Whereas Cricotopus sylvestris, Arctopelopia sp., and Procladius sp. characterised the chironomid community in Icelandic hot springs, cold and tepid springs were dominated by Eukiefferiella minor, Orthocladius frigidus and Diamesa spp. Community composition analyses and the exclusive occurrence of taxa in one of the temperature classes validated the ecological relevance of Tuxen’s spring classification for the chironomid species community. Both environmental parameters and invertebrate community of Icelandic hot springs seem to be the same as 80 years ago. Although springs have the potential to provide stable habitats, they are currently under high anthropogenic pressure, and should be increasingly considered in nature conservation.Icelandic Research Fund (RANNÍS), grant nr. 141863-051Peer Reviewe

    Overview of the Nordic Seas CARINA data and salinity measurements

    Get PDF
    Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005
    corecore